import torch from typing import Union, Dict, List, Tuple from operator import add, floordiv, getitem, mul, neg, setitem, sub, pos from . import META_COMPATIBILITY __all__ = ['activation_size', 'parameter_size'] if META_COMPATIBILITY: aten = torch.ops.aten WEIRD_OPS = [ torch.where, ] INPLACE_ATEN = [ aten.add_.Tensor, aten.add.Tensor, aten.sub_.Tensor, aten.div_.Tensor, aten.div_.Scalar, aten.mul_.Tensor, aten.mul.Tensor, aten.bernoulli_.float, # inplace reshaping aten.detach.default, aten.t.default, aten.transpose.int, aten.view.default, aten._unsafe_view.default, ] __all__ += ['INPLACE_ATEN', 'WEIRD_OPS'] else: # TODO fill out the inplace ops INPLACE_OPS = [ add, sub, mul, floordiv, neg, pos, getitem, setitem, getattr, torch.Tensor.cpu, ] # TODO: list all call_methods that are inplace here INPLACE_METHOD = [ 'transpose', 'permute', # TODO: reshape may return a copy of the data if the data is not contiguous 'reshape', 'dim', 'flatten', 'size', 'view', 'unsqueeze', 'to', 'type', 'flatten', ] # TODO: list all call_methods that are not inplace here NON_INPLACE_METHOD = [ 'chunk', 'contiguous', 'expand', 'mean', 'split', ] __all__ += ['INPLACE_OPS', 'INPLACE_METHOD', 'NON_INPLACE_METHOD'] def activation_size(out: Union[torch.Tensor, Dict, List, Tuple, int]) -> int: """Calculate activation size of a node. Args: activation (Union[torch.Tensor, Dict, List, Tuple, int]): The activation of a `torch.nn.Module` or `torch.nn.functional` Returns: int: The activation size """ act_size = 0 if isinstance(out, torch.Tensor): act_size += out.numel() * torch.tensor([], dtype=out.dtype).element_size() elif isinstance(out, dict): value_list = [v for _, v in out.items()] act_size += activation_size(value_list) elif isinstance(out, tuple) or isinstance(out, list): for element in out: act_size += activation_size(element) return act_size def parameter_size(mod: torch.nn.Module) -> int: """Calculate param size of a node. Args: mod (torch.nn.Module): The target `torch.nn.Module` Returns: int: The param size """ param_size = 0 for param in mod.parameters(): param_size += param.numel() * torch.tensor([], dtype=param.dtype).element_size() return param_size