import gc from collections import namedtuple import psutil import torch import torch.distributed as dist from packaging import version from colossalai.accelerator import get_accelerator from colossalai.legacy.core import global_context as gpc from colossalai.logging import get_dist_logger _GLOBAL_CUDA_MEM_FRACTION = 1.0 _GLOBAL_CPU_MEM_CAPACITY = -1 def _bytes_to_MB(val, decimal=2): """A byte-to-Megabyte converter, default using binary notation. :param val: X bytes to convert :return: X' MB """ return round(val / (1024 * 1024), decimal) # copy from PatrickStar def _get_cpu_memory_info(): ps_mem_info = namedtuple("ps_mem_info", ["total", "free", "cached", "buffers", "used"]) try: # psutil reads the memory info from /proc/memory_info, # which results in returning the host memory instead of # that of container. # Here we try to read the container memory with method in: # https://stackoverflow.com/a/46213331/5163915 mems = {} with open("/sys/fs/cgroup/memory/memory.meminfo", "rb") as f: for line in f: fields = line.split() mems[fields[0]] = int(fields[1]) * 1024 total = mems[b"MemTotal:"] free = mems[b"MemFree:"] cached = mems[b"Cached:"] buffers = mems[b"Buffers:"] used = total - free - cached - buffers if used < 0: used = total - free mem_info = ps_mem_info(total=total, free=free, cached=cached, buffers=buffers, used=used) except FileNotFoundError: mems = psutil.virtual_memory() mem_info = ps_mem_info( total=mems.total, free=mems.free, cached=mems.cached, buffers=mems.buffers, used=mems.used, ) return mem_info def report_memory_usage(message, logger=None, report_cpu=False): """Calculate and print RAM usage (in GB) Args: message (str): A prefix message to add in the log. logger (:class:`colossalai.logging.DistributedLogger`): The logger used to record memory information. report_cpu (bool, optional): Whether to report CPU memory. Raises: EnvironmentError: Raise error if no distributed environment has been initialized. """ if not dist.is_initialized(): raise EnvironmentError("No distributed environment is initialized") gpu_allocated = _bytes_to_MB(torch.cuda.memory_allocated()) gpu_max_allocated = _bytes_to_MB(torch.cuda.max_memory_allocated()) gpu_cached = _bytes_to_MB(torch.cuda.memory_reserved()) gpu_max_cached = _bytes_to_MB(torch.cuda.max_memory_reserved()) full_log = ( f"{message}: GPU: allocated {gpu_allocated} MB, max allocated {gpu_max_allocated} MB, " + f"cached: {gpu_cached} MB, max cached: {gpu_max_cached} MB" ) if report_cpu: # python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports gc.collect() vm_stats = psutil.virtual_memory() vm_used = _bytes_to_MB(vm_stats.total - vm_stats.available) full_log += f", CPU Virtual Memory: used = {vm_used} MB, percent = {vm_stats.percent}%" if logger is None: logger = get_dist_logger() logger.info(full_log) # get the peak memory to report correct data, so reset the counter for the next call if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ torch.cuda.reset_peak_memory_stats() def colo_device_memory_capacity(device: torch.device) -> int: """ Get the capacity of the memory of the device Args: device (torch.device): a device Returns: int: size in byte """ assert isinstance(device, torch.device) if device.type == "cpu": # In the context of 1-CPU-N-GPU, the memory capacity of the current process is 1/N overall CPU memory. return colo_get_cpu_memory_capacity() / gpc.num_processes_on_current_node if device.type == "cuda": return ( torch.cuda.get_device_properties(get_accelerator().get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION ) def colo_device_memory_used(device: torch.device) -> int: """ Get the device memory on device belonging to the current process. Args: device (torch.device): a device Returns: int: memory size in bytes """ if device.type == "cpu": mem_info = _get_cpu_memory_info() # In the context of 1-CPU-N-GPU, the memory usage of the current process is 1/N CPU memory used. # Each process consumes the same amount of memory. ret = mem_info.used / gpc.num_processes_on_current_node return ret elif device.type == "cuda": ret: int = torch.cuda.memory_allocated(device) # get the peak memory to report correct data, so reset the counter for the next call if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+ torch.cuda.reset_peak_memory_stats(device) return ret def colo_set_process_memory_fraction(ratio: float) -> None: """colo_set_process_memory_fraction set how much cuda memory used on the gpu belonging to the current process. Args: ratio (float): a ratio between 0. ~ 1. """ if version.parse(torch.__version__) < version.parse("1.8"): logger = get_dist_logger("colo_set_process_memory_fraction") logger.warning("colo_set_process_memory_fraction failed because torch version is less than 1.8") return global _GLOBAL_CUDA_MEM_FRACTION _GLOBAL_CUDA_MEM_FRACTION = ratio torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_accelerator().get_current_device()) def colo_set_cpu_memory_capacity(size: int) -> None: global _GLOBAL_CPU_MEM_CAPACITY mem_info = _get_cpu_memory_info() total_size = mem_info.total if size <= total_size: _GLOBAL_CPU_MEM_CAPACITY = size else: _GLOBAL_CPU_MEM_CAPACITY = total_size def colo_get_cpu_memory_capacity() -> int: """ Get the cpu memory capacity. We may not use all of it. Returns: int: _description_ """ global _GLOBAL_CPU_MEM_CAPACITY if _GLOBAL_CPU_MEM_CAPACITY == -1: mem_info = _get_cpu_memory_info() return mem_info.total else: return _GLOBAL_CPU_MEM_CAPACITY