#!/usr/bin/env python # -*- encoding: utf-8 -*- import pytest import torch from checks_3d.check_layer_3d import ( check_classifier_no_given_weight, check_embed, check_layernorm, check_linear, check_loss, check_patch_embed, check_vocab_parallel_classifier_given_embed_weight, check_vocab_parallel_classifier_no_given_weight, check_vocab_parallel_embed, check_vocab_parallel_loss, ) from colossalai.legacy.core import global_context as gpc from colossalai.legacy.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.testing import rerun_if_address_is_in_use, skip_if_not_enough_gpus, spawn CONFIG = dict( parallel=dict( pipeline=1, tensor=dict(mode="3d", size=8), ), seed=42, ) def check_layer(): check_linear() check_layernorm() check_classifier_no_given_weight() check_vocab_parallel_classifier_no_given_weight() check_vocab_parallel_classifier_given_embed_weight() check_embed() check_patch_embed() check_vocab_parallel_embed() check_loss() check_vocab_parallel_loss() def check_layer_and_operation(rank, world_size, port): disable_existing_loggers() launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = True check_layer() gpc.destroy() torch.cuda.empty_cache() @pytest.mark.dist @skip_if_not_enough_gpus(min_gpus=8) @rerun_if_address_is_in_use() def test_3d(): spawn(check_layer_and_operation, 8) if __name__ == "__main__": test_3d()