from typing import List, Optional, Tuple, Union import torch from transformers.generation import GenerationConfig from colossalai.inference.logit_processors import get_logits_processor def greedy_sample( logprobs: torch.Tensor, ) -> torch.Tensor: """ Sample tokens greedyly. """ results = torch.argmax(logprobs, dim=-1) return results def multinomial_sample( probs: torch.Tensor, ) -> torch.Tensor: """ Sample tokens in a random phase. """ random_results = torch.multinomial(probs, num_samples=1).squeeze(1) return random_results def beam_search_sample( beam_width: int, logprobs: torch.Tensor, is_prompt: bool = False, ) -> List[Tuple[List[int], List[int]]]: """ Sample tokens with beam search. We sample 2 * beam_width candidates to make sure that with high probability we can get `beam_width` candidates in addition to the finished sequences for the next iteration. ref: https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563 for details. See also HF reference: https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065 # NOTE: this beam search sample function is wrong now. """ results = [] if is_prompt: # Prompt phase. parent_ids = [0] * (2 * beam_width) _, next_token_ids = torch.topk(logprobs[0], 2 * beam_width) next_token_ids = next_token_ids.tolist() else: # Generation phase. # cumulative_logprobs = [seq_data[seq_id].cumulative_logprob for seq_id in seq_ids] cumulative_logprobs = torch.tensor(logprobs, dtype=torch.float, device=seq_group_logprobs.device) seq_group_logprobs = seq_group_logprobs + cumulative_logprobs.unsqueeze(dim=1) _, topk_ids = torch.topk(logprobs.flatten(), 2 * beam_width) results.append((next_token_ids, parent_ids)) return results def search_tokens( generation_config: Union[GenerationConfig, dict], logits, is_prompt: bool = False, batch_token_ids: Optional[List[List[int]]] = None, ): """ Sample tokens for finished requests. """ # NOTE: need to decide the granularity to process logits (sequence or batch) # convert GenerationConfig to dict # temporary fix for compatibility with the usage of RPCInferenceEngine if isinstance(generation_config, GenerationConfig): generation_config = generation_config.to_dict() if (repetition_penalty := generation_config.get("repetition_penalty", 1.0)) != 1.0: logits = get_logits_processor("repetition_penalty", logits, repetition_penalty, batch_token_ids) if (no_repeat_ngram_size := generation_config.get("no_repeat_ngram_size", 0)) > 0: logits = get_logits_processor("no_repeat_ngram_size", logits, no_repeat_ngram_size, batch_token_ids) if (forced_eos_token_id := generation_config.get("forced_eos_token_id", None)) is not None: sequence_lengths = [len(batch_token_ids[i]) for i in range(len(batch_token_ids))] max_out_lengths = [generation_config.max_length for _ in range(len(batch_token_ids))] logits = get_logits_processor( "forced_eos_token_id", logits, sequence_lengths, max_out_lengths, forced_eos_token_id ) if generation_config.get("do_sample"): if (temperature := generation_config.get("temperature", 1.0)) != 1.0: logits = get_logits_processor("temperature", logits, temperature) if (top_k := generation_config.get("top_k", 0)) != 0: logits = get_logits_processor("top_k", logits, top_k) if (top_p := generation_config.get("top_p", 1.0)) < 1.0: logits = get_logits_processor("top_p", logits, top_p) # calculate probs probs = torch.softmax(logits, dim=-1, dtype=torch.float) logprobs = torch.log_softmax(logits, dim=-1, dtype=torch.float) # sample the next tokens if generation_config.get("num_beams", 1) != 1: raise NotImplementedError("Beam search is not supported yet.") if generation_config.get("do_sample", False): sample_tokens = multinomial_sample(probs) else: sample_tokens = greedy_sample(logprobs) return sample_tokens