from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn.parallel import ZeroDDP from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port, get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs def run_gemini_fwd_bwd(rank, world_size, port, model_name: str, iter_num=2): PLACEMENT_POLICY = 'auto' disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() # build torch model model_torch = model_builder(checkpoint=False).cuda() for i, (data, label) in enumerate(train_dataloader): if i >= iter_num: break run_fwd_bwd(model_torch, data.cuda(), label.cuda(), criterion, False, use_init_ctx=False) # build CAI model with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=False) from colossalai.gemini import ChunkManager, GeminiManager, search_chunk_configuration config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) chunk_manager = ChunkManager(config_dict, init_device=GeminiManager.get_default_device(PLACEMENT_POLICY)) gemini_manager = GeminiManager(PLACEMENT_POLICY, chunk_manager) model = ZeroDDP(model, gemini_manager) model.train() for i, (data, label) in enumerate(train_dataloader): if i >= iter_num: break run_fwd_bwd(model, data.cuda(), label.cuda(), criterion, False, use_init_ctx=True) for p1, p2 in zip(model.parameters(), model_torch.parameters()): torch.allclose(p1.to(torch.float), p2.to(torch.float)) print(f'pass test {model_name}') @pytest.mark.parametrize("model_name", ["inline_op_model", "bert", "simple_net", "gpt2", "resnet18"]) @rerun_if_address_is_in_use() def test_gemini_train(model_name, iter_num=4): run_func = partial(run_gemini_fwd_bwd, world_size=1, port=free_port(), model_name=model_name, iter_num=iter_num) mp.spawn(run_func, nprocs=1) if __name__ == '__main__': # for model_name in ["bert", "resnet18", "inline_op_model"]: # bert, gpt, inline_op_model, nested_model, no_leaf_module, # repeated_computed_layer, resnet, simple_net for model_name in ["resnet18"]: test_gemini_train(model_name=model_name, iter_num=4)