#!/usr/bin/env python # -*- encoding: utf-8 -*- import functools from contextlib import contextmanager import torch.cuda from torch import Tensor from ..parallel_mode import ParallelMode from .seed_manager import SeedManager _SEED_MANAGER = SeedManager() def get_seeds(): """Returns the seeds of the seed manager. Returns: dict: The seeds of the seed manager. """ return _SEED_MANAGER.seeds def get_states(copy=False): """Returns the seed states of the seed manager. Returns: dict: The seed states of the seed manager. """ states = _SEED_MANAGER.seed_states if copy: new_states = dict() for parallel_mode, state in states.items(): new_states[parallel_mode] = state.clone() return new_states else: return _SEED_MANAGER.seed_states def get_current_mode(): """Returns the current mode of the seed manager. Returns: :class:`torch.ByteTensor`: The current mode of the seed manager. """ return _SEED_MANAGER.current_mode def add_seed(parallel_mode: ParallelMode, seed: int, overwrite: bool = False): """Adds a seed to the seed manager for `parallel_mode`. Args: parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode. seed (int): The seed to be added Raises: AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of :class:`colossalai.legacy.context.ParallelMode` or the seed for `parallel_mode` has been added. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. """ _SEED_MANAGER.add_seed(parallel_mode, seed, overwrite) def set_mode(parallel_mode: ParallelMode): """Sets the current mode of the seed manager. Args: parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. """ _SEED_MANAGER.set_mode(parallel_mode) def set_seed_states(parallel_mode: ParallelMode, state: Tensor): """Sets the state of the seed manager for `parallel_mode`. Args: parallel_mode (:class:`colossalai.legacy.context.ParallelMode`): The chosen parallel mode. state (:class:`torch.Tensor`): the state to be set. Raises: AssertionError: Raises an AssertionError if `parallel_mode` is not found in the seed manager. """ _SEED_MANAGER.set_state(parallel_mode, state) def sync_states(): current_mode = get_current_mode() current_states = torch.cuda.get_rng_state() set_seed_states(current_mode, current_states) @contextmanager def seed(parallel_mode: ParallelMode): """A context for seed switch Examples: >>> with seed(ParallelMode.DATA): >>> output = F.dropout(input) Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. """ try: # set to new mode current_mode = _SEED_MANAGER.current_mode yield _SEED_MANAGER.set_mode(parallel_mode) finally: # recover _SEED_MANAGER.set_mode(current_mode) def with_seed(func, parallel_mode: ParallelMode): """ A function wrapper which executes the function with a specified seed. Examples: >>> # use with decorator >>> @with_seed(ParallelMode.DATA) >>> def forward(input): >>> return F.dropout(input) >>> out = forward(input) >>> # OR use it inline >>> def forward(input): >>> return F.dropout(input) >>> wrapper_forward = with_seed(forward, ParallelMode.DATA) >>> out = wrapped_forward(input) Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode `_. """ @functools.wraps(func) def wrapper(*args, **kwargs): # switch mode current_mode = _SEED_MANAGER.current_mode _SEED_MANAGER.set_mode(parallel_mode) # exec func out = func(*args, **kwargs) # recover state _SEED_MANAGER.set_mode(current_mode) return out return wrapper def moe_set_seed(seed): if torch.cuda.is_available(): from colossalai.legacy.core import global_context as gpc global_rank = gpc.get_global_rank() diff_seed = seed + global_rank add_seed(ParallelMode.TENSOR, diff_seed, True) print(f"moe seed condition: {global_rank} with tensor seed {diff_seed}", flush=True) def reset_seeds(): _SEED_MANAGER.reset()