#!/usr/bin/env python # -*- encoding: utf-8 -*- import pprint from functools import partial import colossalai.nn as col_nn import pytest import torch import torch.multiprocessing as mp import torch.nn as nn from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.initialize import launch from colossalai.logging import disable_existing_loggers from colossalai.utils import free_port, is_using_pp from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint from colossalai.testing import rerun_on_exception, skip_if_not_enough_gpus def build_pipeline(model): from colossalai.pipeline.utils import partition_uniform pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) depth = len(model) start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0] layers = [] for i in range(depth): if start <= i < end: layers.append(model[i]) else: layers.append(nn.Identity()) return nn.Sequential(*tuple(layers)) def check_equal(A, B): assert torch.allclose(A, B, rtol=1e-3, atol=1e-2) def check_checkpoint_1d(rank, world_size, port): config = dict(parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, mode="1d")),) disable_existing_loggers() launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4)) sd1 = m1.state_dict() if gpc.get_global_rank() == 0: print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n") save_checkpoint("test.pt", 0, m1) m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4)) if is_using_pp(): m2 = build_pipeline(m2) load_checkpoint("test.pt", m2) sd2 = m2.state_dict() if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0: sd2 = gather_pipeline_parallel_state_dict(sd2) print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n") if gpc.get_global_rank() == 0: for k, v in sd1.items(): assert k in sd2 check_equal(v, sd2[k].to(torch.device("cpu"))) @pytest.mark.dist @skip_if_not_enough_gpus(min_gpus=8) @rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*") def test_checkpoint_1d(): world_size = 8 run_func = partial(check_checkpoint_1d, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == "__main__": test_checkpoint_1d()