import warnings import pytest import torch from packaging import version try: from colossalai.kernel.op_builder.smoothquant import SmoothquantBuilder smoothquant_cuda = SmoothquantBuilder().load() HAS_SMOOTHQUANT_CUDA = True except: warnings.warn("CUDA smoothquant linear is not installed") HAS_SMOOTHQUANT_CUDA = False try: from colossalai.inference.quant.smoothquant.models import LlamaSmoothquantMLP HAS_TORCH_INT = True except: HAS_TORCH_INT = False warnings.warn("Please install torch_int from https://github.com/Guangxuan-Xiao/torch-int") CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4") def torch_llama_mlp(gate_proj, up_proj, down_proj, x): gate_out = torch.mm(x, gate_proj) silu = torch.nn.SiLU() gate_out = silu(gate_out) up_out = torch.mm(x, up_proj) o_out = gate_out * up_out max_up = torch.max(torch.abs(o_out)) min_up = torch.min(torch.abs(o_out)) torch_out = torch.mm(o_out, down_proj) return (torch_out, max_up, min_up) @pytest.mark.skipif( not CUDA_SUPPORT or not HAS_SMOOTHQUANT_CUDA or not HAS_TORCH_INT, reason="smoothquant linear not installed properly or not install torch_int", ) def test_llama_mlp(): hidden_size = 256 intermediate_size = 512 smooth_mlp = LlamaSmoothquantMLP(intermediate_size, hidden_size) smooth_mlp.gate_proj.weight = torch.ones((intermediate_size, hidden_size), dtype=torch.int8, device="cuda") smooth_mlp.up_proj.weight = torch.randint( -10, 10, (intermediate_size, hidden_size), dtype=torch.int8, device="cuda" ) smooth_mlp.down_proj.weight = torch.randint( -10, 10, (hidden_size, intermediate_size), dtype=torch.int8, device="cuda" ) x = torch.ones((1, 256), dtype=torch.int8, device="cuda") torch_out, max_inter, min_inter = torch_llama_mlp( smooth_mlp.gate_proj.weight.transpose(0, 1).to(torch.float) / hidden_size, smooth_mlp.up_proj.weight.transpose(0, 1).to(torch.float) / 127, smooth_mlp.down_proj.weight.transpose(0, 1).to(torch.float) / 127, x.to(torch.float), ) smooth_mlp.down_proj_input_scale = torch.tensor(max_inter.item() / 127) smooth_mlp.gate_proj.a = torch.tensor(1 / hidden_size) smooth_mlp.up_proj.a = torch.tensor(1 / 127) smooth_mlp.down_proj.a = torch.tensor(1 / 127 * (max_inter.item() / 127)) smooth_out = smooth_mlp(x) assert torch.allclose(torch_out, smooth_out, rtol=1e-02, atol=1e-01) if __name__ == "__main__": test_llama_mlp()