""" Script for English retrieval based conversation system backed by LLaMa2 """ import argparse import os from colossalqa.chain.retrieval_qa.base import RetrievalQA from colossalqa.data_loader.document_loader import DocumentLoader from colossalqa.local.llm import ColossalAPI, ColossalLLM from colossalqa.prompt.prompt import PROMPT_RETRIEVAL_CLASSIFICATION_USE_CASE_ZH from colossalqa.retriever import CustomRetriever from colossalqa.text_splitter import ChineseTextSplitter from langchain.embeddings import HuggingFaceEmbeddings if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2") parser.add_argument("--model_path", type=str, default=None, help="path to the model") parser.add_argument("--model_name", type=str, default=None, help="name of the model") parser.add_argument( "--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing" ) args = parser.parse_args() if not os.path.exists(args.sql_file_path): os.makedirs(args.sql_file_path) colossal_api = ColossalAPI.get_api(args.model_name, args.model_path) llm = ColossalLLM(n=1, api=colossal_api) # Define the retriever information_retriever = CustomRetriever(k=2, sql_file_path=args.sql_file_path, verbose=True) # Setup embedding model locally embedding = HuggingFaceEmbeddings( model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} ) # Load data to vector store print("Select files for constructing retriever") documents = [] # define metadata function which is used to format the prompt with value in metadata instead of key, # the later is langchain's default behavior def metadata_func(data_sample, additional_fields): """ metadata_func (Callable[Dict, Dict]): A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. To use key-value format, the metadata_func should be defined as follows: metadata = {'value': 'a string to be used to format the prompt', 'is_key_value_mapping': True} """ metadata = {} metadata["value"] = f"Question: {data_sample['key']}\nAnswer:{data_sample['value']}" metadata["is_key_value_mapping"] = True assert "value" not in additional_fields assert "is_key_value_mapping" not in additional_fields metadata.update(additional_fields) return metadata retriever_data = DocumentLoader( [["../data/data_sample/custom_service_classification.json", "CustomerServiceDemo"]], content_key="key", metadata_func=metadata_func, ).all_data # Split text_splitter = ChineseTextSplitter() splits = text_splitter.split_documents(retriever_data) documents.extend(splits) # Create retriever information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding) # Define retrieval chain retrieval_chain = RetrievalQA.from_chain_type( llm=llm, verbose=True, chain_type="stuff", retriever=information_retriever, chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_CLASSIFICATION_USE_CASE_ZH}, llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True}, ) # Set disambiguity handler # Start conversation while True: user_input = input("User: ") if "END" == user_input: print("Agent: Happy to chat with you :)") break # 要使用和custom_service_classification.json 里的key 类似的句子做输入 agent_response = retrieval_chain.run(query=user_input, stop=["Human: "]) agent_response = agent_response.split("\n")[0] print(f"Agent: {agent_response}")