""" Script for English retrieval based conversation system backed by LLaMa2 """ import argparse import os from colossalqa.chain.retrieval_qa.base import RetrievalQA from colossalqa.data_loader.document_loader import DocumentLoader from colossalqa.local.llm import ColossalAPI, ColossalLLM from colossalqa.memory import ConversationBufferWithSummary from colossalqa.prompt.prompt import ( EN_RETRIEVAL_QA_REJECTION_ANSWER, EN_RETRIEVAL_QA_TRIGGER_KEYWORDS, PROMPT_DISAMBIGUATE_EN, PROMPT_RETRIEVAL_QA_EN, ) from colossalqa.retriever import CustomRetriever from langchain import LLMChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2") parser.add_argument("--model_path", type=str, default=None, help="path to the model") parser.add_argument("--model_name", type=str, default=None, help="name of the model") parser.add_argument( "--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing" ) args = parser.parse_args() if not os.path.exists(args.sql_file_path): os.makedirs(args.sql_file_path) colossal_api = ColossalAPI.get_api(args.model_name, args.model_path) llm = ColossalLLM(n=1, api=colossal_api) # Define the retriever information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True) # Setup embedding model locally embedding = HuggingFaceEmbeddings( model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} ) # Define memory with summarization ability memory = ConversationBufferWithSummary( llm=llm, max_tokens=2000, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True} ) # Define the chain to preprocess the input # Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?" llm_chain_disambiguate = LLMChain( llm=llm, prompt=PROMPT_DISAMBIGUATE_EN, llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True} ) def disambiguity(input): out = llm_chain_disambiguate.run(input=input, chat_history=memory.buffer, stop=["\n"]) return out.split("\n")[0] # Load data to vector store print("Select files for constructing retriever") documents = [] while True: file = input("Enter a file path or press Enter directory without input to exit:").strip() if file == "": break data_name = input("Enter a short description of the data:") separator = input( "Enter a separator to force separating text into chunks, if no separator is given, the default separator is '\\n\\n'. Note that" + "we use neural text spliter to split texts into chunks, the seperator only serves as a delimiter to force split long passage into" + " chunks before passing to the neural network. Press ENTER directly to skip:" ) separator = separator if separator != "" else "\n\n" retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data # Split text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20) splits = text_splitter.split_documents(retriever_data) documents.extend(splits) # Create retriever information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding) # Set document retrieval chain, we need this chain to calculate prompt length memory.initiate_document_retrieval_chain( llm, PROMPT_RETRIEVAL_QA_EN, information_retriever, chain_type_kwargs={ "chat_history": "", }, ) # Define retrieval chain retrieval_chain = RetrievalQA.from_chain_type( llm=llm, verbose=False, chain_type="stuff", retriever=information_retriever, chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_EN, "memory": memory}, llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True}, ) # Set disambiguity handler information_retriever.set_rephrase_handler(disambiguity) # Start conversation while True: user_input = input("User: ") if "END" == user_input: print("Agent: Happy to chat with you :)") break agent_response = retrieval_chain.run( query=user_input, stop=["Human: "], rejection_trigger_keywords=EN_RETRIEVAL_QA_TRIGGER_KEYWORDS, rejection_answer=EN_RETRIEVAL_QA_REJECTION_ANSWER, ) agent_response = agent_response.split("\n")[0] print(f"Agent: {agent_response}")