import os import random import numpy as np import pytest import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import colossalai from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig from colossalai.inference.core.engine import InferenceEngine from colossalai.inference.flash_decoding_utils import FDIntermTensors from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn # BAICHUAN_MODEL_NAME_OR_PATH = "baichuan-inc/Baichuan2-7B-Base" BAICHUAN_MODEL_NAME_OR_PATH = "/home/data/models/Baichuan2-13B-Base" def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def check_inference_engine(use_engine=False, do_sample=False, use_cuda_kernel=False, prompt_template=None): setup_seed(20) tokenizer = AutoTokenizer.from_pretrained(BAICHUAN_MODEL_NAME_OR_PATH, use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(BAICHUAN_MODEL_NAME_OR_PATH, trust_remote_code=True).half().cuda() model = model.eval() inputs = [ "介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,", ] output_len = 38 do_sample = do_sample if do_sample: top_p = 0.5 top_k = 50 else: top_p = None top_k = None if use_engine: inference_config = InferenceConfig( max_output_len=output_len, prompt_template=prompt_template, use_cuda_kernel=use_cuda_kernel ) inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True) assert inference_engine.generation_config.max_new_tokens == output_len inference_engine.add_request(prompts=inputs) assert inference_engine.request_handler._has_waiting() generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k) outputs = inference_engine.generate(generation_config=generation_config) else: if prompt_template: # apply prompt template inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs] tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"] inputs = inputs.cuda() generation_config = GenerationConfig( do_sample=do_sample, top_p=top_p, top_k=top_k, pad_token_id=tokenizer.pad_token_id, max_new_tokens=output_len, ) outputs = model.generate(inputs, generation_config=generation_config) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) return outputs @parameterize("prompt_template", [None, "baichuan"]) @parameterize("do_sample", [True, False]) @parameterize("use_cuda_kernel", [True, False]) def check_output_consistency(prompt_template, do_sample, use_cuda_kernel): cai_outputs = check_inference_engine( use_engine=True, do_sample=do_sample, use_cuda_kernel=use_cuda_kernel, prompt_template=prompt_template ) transformer_outputs = check_inference_engine( use_engine=False, do_sample=do_sample, use_cuda_kernel=use_cuda_kernel, prompt_template=prompt_template ) for s1, s2 in zip(cai_outputs, transformer_outputs): assert s1 == s2, f"\nColossalAI Output: {s1}\nTransformers Output: {s2}" # clear singleton flash decoding tensors FDIntermTensors._instances = {} def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost") check_output_consistency() @pytest.mark.skipif( not os.path.exists(BAICHUAN_MODEL_NAME_OR_PATH), reason="There is no local model address included, please replace this address with a valid one.", ) @pytest.mark.dist @rerun_if_address_is_in_use() def test_inference_engine(): spawn(run_dist, 1) if __name__ == "__main__": test_inference_engine()