set_n_least_used_CUDA_VISIBLE_DEVICES() { local n=${1:-"9999"} echo "GPU Memory Usage:" local FIRST_N_GPU_IDS=$(nvidia-smi --query-gpu=memory.used --format=csv | tail -n +2 | nl -v 0 | tee /dev/tty | sort -g -k 2 | awk '{print $1}' | head -n $n) export CUDA_VISIBLE_DEVICES=$(echo $FIRST_N_GPU_IDS | sed 's/ /,/g') echo "Now CUDA_VISIBLE_DEVICES is set to:" echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES" } # export CUDA_VISIBLE_DEVICES=4,5,6 set_n_least_used_CUDA_VISIBLE_DEVICES 2 PROJECT_NAME="sft" PARENT_SAVE_DIR="" # Path to a folder to save checkpoints PARENT_TENSORBOARD_DIR="" # Path to a folder to save logs PARENT_CONFIG_FILE="" # Path to a folder to save training config logs PRETRAINED_MODEL_PATH="" # huggingface or local model path PRETRAINED_TOKENIZER_PATH="" # huggingface or local tokenizer path declare -a dataset=( YOUR/SFT/DATA/DIR/arrow/part-00000 YOUR/SFT/DATA/DIR/arrow/part-00001 YOUR/SFT/DATA/DIR/arrow/part-00002 YOUR/SFT/DATA/DIR/arrow/part-00003 YOUR/SFT/DATA/DIR/arrow/part-00004 YOUR/SFT/DATA/DIR/arrow/part-00005 YOUR/SFT/DATA/DIR/arrow/part-00006 YOUR/SFT/DATA/DIR/arrow/part-00007 YOUR/SFT/DATA/DIR/arrow/part-00008 YOUR/SFT/DATA/DIR/arrow/part-00009 ) TIMESTAMP=$(date +%Y-%m-%d-%H-%M-%S) FULL_PROJECT_NAME="${PROJECT_NAME}-${TIMESTAMP}" SAVE_DIR="${PARENT_SAVE_DIR}${FULL_PROJECT_NAME}" CONFIG_FILE="${PARENT_CONFIG_FILE}-${FULL_PROJECT_NAME}.json" echo $(which colossalai) echo $(which python) # the real batch size for gradient descent is number_of_node_in_hostfile * nproc_per_node * train_batch_size colossalai run --nproc_per_node 2 --master_port 31312 --hostfile ./hostfile train_sft.py \ --pretrain $PRETRAINED_MODEL_PATH \ --tokenizer_dir $PRETRAINED_TOKENIZER_PATH \ --save_interval 4000 \ --dataset ${dataset[@]} \ --save_path $SAVE_DIR \ --config_file $CONFIG_FILE \ --lora_rank 0 \ --plugin 3d \ --tp 2 \ --pp 1 \ --zero_stage 0 \ --batch_size 2 \ --max_epochs 3 \ --accumulation_steps 1 \ --lr 5e-5 \ --max_len 400 \ --grad_checkpoint \ --use_wandb \ --use_flash_attn