import os from pathlib import Path BATCH_SIZE = 128 IMG_SIZE = 224 DIM = 768 NUM_CLASSES = 10 NUM_ATTN_HEADS = 12 # resnet 18 model = dict(type='VanillaResNet', block_type='ResNetBasicBlock', layers=[2, 2, 2, 2], num_cls=10) parallel = dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None) ) train_data = dict(dataset=dict(type='CIFAR10Dataset', root=Path(os.environ['DATA']), download=True, transform_pipeline=[ dict(type='Resize', size=(IMG_SIZE, IMG_SIZE)), dict(type='ToTensor'), dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]), dataloader=dict(batch_size=BATCH_SIZE, pin_memory=True, num_workers=4, drop_last=True)) optimizer = dict(type='Adam', lr=0.001) loss = dict(type='CrossEntropyLoss')