#!/usr/bin/env python # -*- encoding: utf-8 -*- from abc import ABC, abstractmethod import torch from torch import Tensor from typing import Iterable, Union, List, Callable from .._base_engine import Engine from colossalai.logging import get_dist_logger from colossalai.utils import get_current_device class BaseSchedule(ABC): """A basic helper class to control the process of training or evaluation. It mainly composes of forward_backward_step for gradient backward and optimizer_step for parameters update. For the convenience to enable FP16, we aggreate all codes that contain the control of FP16 in class schedule. """ def __init__(self, batch_data_process_func: Callable = None): self.logger = get_dist_logger() self.batch_data_process_func = batch_data_process_func @staticmethod def _move_tensor(element): if torch.is_tensor(element): if not element.is_cuda: return element.to(get_current_device()).detach() return element def _move_to_device(self, data): if isinstance(data, (tuple, list)): data = tuple([self._move_tensor(d) for d in data]) elif torch.is_tensor(data): data = data.to(get_current_device()).detach() return data def _to_list(self, data): if torch.is_tensor(data): return [data] return data def load_batch(self, data_iter): """Loads a batch from data iterator. It returns the data and labels which are already in the same GPU as where the model's. :return: (data, label) :rtype: (Tensor, Tensor) """ if data_iter is None: raise RuntimeError('Dataloader is not defined.') batch_data = next(data_iter) if self.batch_data_process_func: data, label = self.batch_data_process_func(batch_data) else: data, label = batch_data data, label = self._to_list(data), self._to_list(label) return self._move_to_device(data), self._move_to_device(label) def pre_processing(self, engine: Engine): """To perform actions before running the schedule. """ pass @abstractmethod def forward_backward_step(self, engine: Engine, data_iter: Iterable, forward_only: bool, return_loss: bool = True ): """The process function over a batch of dataset for training or evaluation. :param engine: Colossalai training engine :param inputs: input data :param labels: ground truth :param forward_only: If True, the process won't include backward :param return_loss: If False, the loss won't be returned """ pass