import torch import torch.distributed as dist from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device def send_tensor_meta(tensor, need_meta=True, next_rank=None): """Sends tensor meta information before sending a specific tensor. Since the recipient must know the shape of the tensor in p2p communications, meta information of the tensor should be sent before communications. This function synchronizes with :func:`recv_tensor_meta`. :param tensor: Tensor to be sent :param need_meta: If False, meta information won't be sent :param next_rank: The rank of the next member in pipeline parallel group :type tensor: Tensor :type need_meta: bool, optional :type next_rank: int :return: False :rtype: bool """ if need_meta: if next_rank is None: next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE) tensor_kwargs = {'dtype': torch.long, 'device': get_current_device()} send_shape = torch.tensor(tensor.size(), **tensor_kwargs) send_ndims = torch.tensor(len(tensor.size()), **tensor_kwargs) ops = [ dist.P2POp(dist.isend, send_ndims, next_rank), dist.P2POp(dist.isend, send_shape, next_rank) ] reqs = dist.batch_isend_irecv(ops) for req in reqs: req.wait() torch.cuda.synchronize() return False def recv_tensor_meta(tensor_shape, prev_rank=None): """Recieves tensor meta information before recieving a specific tensor. Since the recipient must know the shape of the tensor in p2p communications, meta information of the tensor should be recieved before communications. This function synchronizes with :func:`send_tensor_meta`. :param tensor_shape: The shape of the tensor to be recieved :param prev_rank: The rank of the source of the tensor :type tensor_shape: torch.Size :type prev_rank: int, optional :return: The shape of the tensor to be recieved :rtype: torch.Size """ if tensor_shape is None: if prev_rank is None: prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE) tensor_kwargs = {'dtype': torch.long, 'device': get_current_device()} recv_ndims = torch.empty((), **tensor_kwargs) dist.recv(recv_ndims, prev_rank) recv_shape = torch.empty(recv_ndims, **tensor_kwargs) dist.recv(recv_shape, prev_rank) tensor_shape = torch.Size(recv_shape) return tensor_shape