import torch try: import triton import triton.language as tl HAS_TRITON = True except ImportError: HAS_TRITON = False print("please install triton from https://github.com/openai/triton") if HAS_TRITON: ''' this kernel function is modified from https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html ''' @triton.jit def qkv_gemm_4d_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_ab, stride_ah, stride_am, stride_ak, stride_bb, stride_bh, stride_bk, stride_bn, stride_cb, stride_ch, stride_cm, stride_cn, scale, # Meta-parameters BLOCK_SIZE_M : tl.constexpr = 64, BLOCK_SIZE_N : tl.constexpr = 32, BLOCK_SIZE_K : tl.constexpr = 32, GROUP_SIZE_M : tl.constexpr = 8, ): r""" A kernel function which is used to do batch-matmul for Q*K^T or score_matrix * V for attention layer, where score_matrix is softmax(Q*V^T/sqrt(hidden_size)) Args: a_ptr(torch.Tensor): pointer to input tensor array (bs, M, h, K) or (bs, h, M, K) b_ptr(torch.Tensor): pointer to input tensor array (bs, N, h, K) or (bs, h, N, K) c_ptr(torch.Tensor): pointer to output tensor array (bs, M, h, N) or (bs, h, M, N) stride_ab(tl.constexpr): stride for bs-dimention for tensor array A stride_ah(tl.constexpr): stride for h-dimention for tensor array A stride_am(tl.constexpr): stride for m-dimention for tensor array A stride_ak(tl.constexpr): stride for k-dimention for tensor array A stride_bb(tl.constexpr): stride for bs-dimention for tensor array B stride_bh(tl.constexpr): stride for h-dimention for tensor array B stride_bk(tl.constexpr): stride for k-dimention for tensor array B stride_bn(tl.constexpr): stride for n-dimention for tensor array B stride_cb(tl.constexpr): stride for bs-dimention for tensor array output stride_ch(tl.constexpr): stride for h-dimention for tensor array output stride_cm(tl.constexpr): stride for m-dimention for tensor array output stride_cn(tl.constexpr): stride for n-dimention for tensor array output BLOCK_SIZE_M : tiling size for M-dimension of tensor Array a BLOCK_SIZE_N : tiling size for N-dimension of tensor Array b BLOCK_SIZE_K : tiling size for K-dimension of a and b GROUP_SIZE_M : group size for reducing cache miss, more details: """ num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) batch = tl.program_id(axis = 0) head = tl.program_id(axis = 1) pid = tl.program_id(axis = 2) # the following is from tutorial: https://triton-lang.org/main/getting-started/tutorials/03-matrix-multiplication.html num_pid_in_group = GROUP_SIZE_M * num_pid_n group_id = pid // num_pid_in_group first_pid_m = group_id * GROUP_SIZE_M group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) pid_m = first_pid_m + (pid % group_size_m) pid_n = (pid % num_pid_in_group) // group_size_m offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = (a_ptr + batch * stride_ab + head * stride_ah + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)) b_ptrs = (b_ptr + batch * stride_bb + head * stride_bh + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)) accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, K, BLOCK_SIZE_K): a_mask = (offs_am[:, None] < M) & (offs_k[None, :] + k < K) b_mask = (offs_k[:, None] + k < K) & (offs_bn[None, :] < N) a = tl.load(a_ptrs, mask=a_mask, other=0.) b = tl.load(b_ptrs, mask=b_mask, other=0.) accumulator += tl.dot(a, b) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk accumulator = accumulator.to(c_ptr.dtype.element_ty) if scale > 0: accumulator = accumulator * scale.to(c_ptr.dtype.element_ty) offs_accumu_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_accumu_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = (c_ptr + batch * stride_cb + head * stride_ch + stride_cm * offs_accumu_m[:, None] + stride_cn * offs_accumu_n[None, :]) accumulator_mask = (offs_accumu_m[:, None] < M) & (offs_accumu_n[None, :] < N) tl.store(c_ptrs, accumulator, mask=accumulator_mask)