#include "multihead_attention_1d.h" #include #include #include #if TORCH_VERSION_MAJOR > 1 || \ (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR >= 13) #include #else #include #endif #include #include "context.h" #include "kernels.h" template MultiHeadAttention::MultiHeadAttention(int layer_id, int max_batch_tokens, int max_seq_len, int hidden_size, int num_heads, float attn_prob_dropout_ratio, float hidden_output_dropout_ratio, bool pre_or_postLayerNorm) : _layer_id(layer_id), _max_batch_tokens(max_batch_tokens), _max_seq_len(max_seq_len), _hidden_size(hidden_size), _heads(num_heads), _training(true), _pre_or_postLayerNorm(pre_or_postLayerNorm), _qkv_linear( typename FeedForward::Config(3 * hidden_size, hidden_size)), _attn_out_linear( typename FeedForward::Config(hidden_size, hidden_size)), _attn_ln(typename Normalize_Layer::Config(hidden_size, false), _max_batch_tokens), _softmax(typename Softmax::Config(num_heads)), _attn_prob_dropout(typename Dropout::Config(attn_prob_dropout_ratio), _max_batch_tokens * _heads * _max_seq_len), _attn_dropout(typename Dropout::Config(hidden_output_dropout_ratio), _max_batch_tokens * _hidden_size), _attn_scores(typename StridedBatchGemm::Config( (T(1.0) / T(sqrt(_hidden_size / _heads))), T(0.0), CUBLAS_OP_T, CUBLAS_OP_N)), _attn_context(typename StridedBatchGemm::Config( T(1.0), T(0.0), CUBLAS_OP_N, CUBLAS_OP_N)) { assert(_hidden_size % _heads == 0); } template MultiHeadAttention::~MultiHeadAttention() { free_mem_buffer(); } template void MultiHeadAttention::attn_layer_fw(const T *input_ptr, const T *input_mask_ptr, T *output_ptr, T *buffer) { T *q_tf_ptr = _qkv_ptr; T *k_tf_ptr = q_tf_ptr + _batch_dim / pg_size; T *v_tf_ptr = k_tf_ptr + _batch_dim / pg_size; if (_pre_or_postLayerNorm) { _attn_ln.Forward(_gemmQKV_inp_ptr, input_ptr, _attn_nw_ptr, _attn_nb_ptr, _batch_tokens, _stream); } const T *gemmQKV_inp_ptr = _pre_or_postLayerNorm ? _gemmQKV_inp_ptr : input_ptr; _qkv_linear.reset_size(3 * _hidden_size / pg_size, _hidden_size); _qkv_linear.Forward(_batch_tokens, gemmQKV_inp_ptr, _attn_qkvw_ptr, buffer, _cublasHandle); launch_bias_add_transform_20314(q_tf_ptr, buffer, _attn_qkvb_ptr, _batch_size, _seq_len, 3, _heads / pg_size, _hidden_size / _heads, _stream); // attention scores, q*k _attn_scores.Forward(_batch_heads, _soft_out_ptr, k_tf_ptr, q_tf_ptr, _cublasHandle); // Softmax + Mask _softmax.reset_size(_heads / pg_size); _softmax.Forward(_soft_out_ptr, input_mask_ptr, _batch_size, _seq_len, _seq_len, _stream, true); // attn prob dropout. _attn_prob_dropout.dropout(_ctx_bufB_ptr, _soft_out_ptr, _batch_heads * _seq_len * _seq_len, _stream); // attention context, score * v _attn_context.Forward(_batch_heads, buffer, v_tf_ptr, _ctx_bufB_ptr, _cublasHandle); // [b, nh, s, ad] -> [b, s, nh, ad] launch_transform4d_0213(_attn_o_inp_ptr, buffer, _batch_size, _seq_len, _hidden_size / pg_size, _heads / pg_size, 1, _stream); _attn_out_linear.reset_size(_hidden_size, _hidden_size / pg_size); _attn_out_linear.Forward(_batch_tokens, _attn_o_inp_ptr, _attn_ow_ptr, output_ptr, _cublasHandle); // allreduce if (pg == c10::detail::UniqueVoidPtr() || pg->getSize() == 1) { } else { auto data_type = torch::kFloat; if (typeid(T) != typeid(float)) { data_type = torch::kHalf; } auto output_tensor = torch::from_blob( output_ptr, {int(_batch_size), int(_seq_len), int(_hidden_size)}, torch::TensorOptions(torch::kCUDA).dtype(data_type)); std::vector allreduce_tensors = {output_tensor}; auto work = pg->allreduce(allreduce_tensors, c10d::AllreduceOptions()); work->wait(); } _attn_dropout.bias_dropout_residual(output_ptr, output_ptr, input_ptr, _attn_ob_ptr, _batch_tokens, _hidden_size, _stream); if (!_pre_or_postLayerNorm) { // in-place ln since ln-input will not be used in post-ln mode _attn_ln.Forward(output_ptr, output_ptr, _attn_nw_ptr, _attn_nb_ptr, _batch_tokens, _stream); } } template void MultiHeadAttention::Forward(const T *input_ptr, const T *input_mask_ptr, T *out_ptr) { _stream = Context::Instance().get_stream(); _cublasHandle = Context::Instance().get_cublashandle(); T *attn_buffer = _shared_mem_ptr; // 3 * _batch_dim attn_layer_fw(input_ptr, input_mask_ptr, out_ptr, attn_buffer); } template void MultiHeadAttention::attn_layer_bw(const T *input_ptr, const T *input_mask_ptr, const T *output_ptr, const T *grad_output_ptr, T *grad_input_ptr, T *buffer) { cudaStream_t streams[2] = {_stream, _stream}; const T *q_tf_ptr = _qkv_ptr; const T *k_tf_ptr = q_tf_ptr + _batch_dim / pg_size; const T *v_tf_ptr = k_tf_ptr + _batch_dim / pg_size; // batch_dim = batch_size * seq_len * hidden_size // buffer size: batch_dim * 3 + max(batch_dim * 3, // batch_size * head_num * seq_len * seq_len) T *grad_residual_ptr = buffer; buffer += _batch_dim; T *grad_input_buf_ptr = buffer; // batch_dim T *grad_qkv_5d_ptr = buffer; // batch_dim * 3 buffer += 3 * _batch_dim / pg_size; T *grad_qkv_4d_ptr = buffer; // batch_dim * 3 T *grad_softmax_ptr = buffer; // batch_size * head_num * seq_len * seq_len // buffer += max(3 * _batch_dim, // batch_size * head_num * seq_len * seq_len); if (_pre_or_postLayerNorm) { _attn_dropout.d_bias_dropout_residual(grad_input_ptr, _grad_attn_ob_ptr, grad_output_ptr, _batch_tokens, _hidden_size, _stream); } else { _attn_ln.Backward(_grad_attn_nw_ptr, _grad_attn_nb_ptr, grad_residual_ptr, grad_output_ptr, nullptr, output_ptr, _attn_nw_ptr, _attn_nb_ptr, _batch_tokens, streams); _attn_dropout.d_bias_dropout_residual(grad_input_ptr, _grad_attn_ob_ptr, grad_residual_ptr, _batch_tokens, _hidden_size, _stream); } // bw of output project _attn_out_linear.reset_size(_hidden_size, _hidden_size / pg_size); _attn_out_linear.Backward(_batch_tokens, grad_input_ptr, _attn_o_inp_ptr, _attn_ow_ptr, _grad_attn_ow_ptr, _grad_attn_ob_ptr, _cublasHandle, _stream, grad_input_buf_ptr, nullptr, false); launch_transform_0213(grad_input_ptr, grad_input_buf_ptr, _batch_size, _seq_len, _hidden_size / pg_size, _heads / pg_size, _stream); // bw of score * v _attn_context.Backward( _batch_heads, grad_input_ptr, v_tf_ptr, _ctx_bufB_ptr, _cublasHandle, grad_qkv_5d_ptr + 2 * _batch_dim / pg_size, grad_softmax_ptr); _attn_prob_dropout.d_dropout(grad_softmax_ptr, _batch_heads * _seq_len * _seq_len, _stream); _softmax.reset_size(_heads / pg_size); _softmax.Backward(grad_softmax_ptr, _soft_out_ptr, _batch_size, _seq_len, _seq_len, _stream); // bw of q * k _attn_scores.Backward(_batch_heads, grad_softmax_ptr, k_tf_ptr, q_tf_ptr, _cublasHandle, grad_qkv_5d_ptr + _batch_dim / pg_size, grad_qkv_5d_ptr); // [3, b, nh, s, ad] -> [b, s, 3, h] launch_transform4d_0213(grad_qkv_4d_ptr, grad_qkv_5d_ptr, _batch_size, _seq_len, _hidden_size / pg_size, _heads / pg_size, 3, _stream); const T *gemmQKV_inp_ptr = _pre_or_postLayerNorm ? _gemmQKV_inp_ptr : input_ptr; _qkv_linear.reset_size(3 * _hidden_size / pg_size, _hidden_size); _qkv_linear.Backward(_batch_tokens, grad_qkv_4d_ptr, gemmQKV_inp_ptr, _attn_qkvw_ptr, _grad_attn_qkvw_ptr, _grad_attn_qkvb_ptr, _cublasHandle, _stream, grad_input_buf_ptr, nullptr, true); // allreduce if (pg == c10::detail::UniqueVoidPtr() || pg->getSize() == 1) { } else { auto data_type = torch::kFloat; if (typeid(T) != typeid(float)) { data_type = torch::kHalf; } auto grad_input_tensor = torch::from_blob(grad_input_buf_ptr, {int(_batch_size), int(_seq_len), int(_hidden_size)}, torch::TensorOptions(torch::kCUDA).dtype(data_type)); std::vector allreduce_tensors = {grad_input_tensor}; auto work = pg->allreduce(allreduce_tensors, c10d::AllreduceOptions()); work->wait(); } if (_pre_or_postLayerNorm) { _attn_ln.Backward(_grad_attn_nw_ptr, _grad_attn_nb_ptr, grad_input_ptr, grad_input_buf_ptr, grad_output_ptr, gemmQKV_inp_ptr, _attn_nw_ptr, _attn_nb_ptr, _batch_tokens, streams); } else { // FIXME later launch_fused_add2(grad_input_ptr, grad_input_buf_ptr, grad_residual_ptr, _batch_size, _seq_len, _hidden_size, _stream); } } template void MultiHeadAttention::Backward(const T *grad_output_ptr, const T *input_ptr, const T *output_ptr, const T *input_mask_ptr, T *grad_input_ptr) { _stream = Context::Instance().get_stream(); _cublasHandle = Context::Instance().get_cublashandle(); T *buffer = _shared_mem_ptr; /* buffer size needed by attn bw: 4 * _batch_dim + max(3 * _batch_dim, _batch_size * _head_num * _seq_len * _seq_len); */ attn_layer_bw(input_ptr, input_mask_ptr, output_ptr, grad_output_ptr, grad_input_ptr, buffer); } template void MultiHeadAttention::SetTrainingMode(bool training) { // Dropout will be skipped when not in training model. _attn_prob_dropout.SetTrainingMode(training); _attn_dropout.SetTrainingMode(training); } template T *MultiHeadAttention::_shared_mem_ptr = nullptr; template class MultiHeadAttention; template class MultiHeadAttention<__half>; // x is torch::Tensor #define CHECK_CUDA(x) AT_ASSERTM(x.is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) \ AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) \ CHECK_CUDA(x); \ CHECK_CONTIGUOUS(x) static std::unordered_map> s_multihead_attention; template int create_multihead_attention(int layer_id, int max_batch_tokens, int max_seq_len, int hidden_dim, int num_heads, float attn_prob_dropout_ratio, float hidden_dropout_ratio, bool pre_or_postLayerNorm, c10::intrusive_ptr pg_) { cudaStream_t stream = at::cuda::getCurrentCUDAStream(); Context::Instance().set_stream(stream); auto layer = std::make_shared>( layer_id, max_batch_tokens, max_seq_len, hidden_dim, num_heads, attn_prob_dropout_ratio, hidden_dropout_ratio, pre_or_postLayerNorm); layer->SetPG(pg_); s_multihead_attention[layer_id] = layer; std::string dtype = (std::is_same::value) ? "half" : "float"; return 0; } template std::vector multihead_attention_fw( int layer_id, const torch::Tensor &input, const torch::Tensor &input_mask, const torch::Tensor &in_proj_weight, const torch::Tensor &in_proj_bias, const torch::Tensor &out_proj_weight, const torch::Tensor &out_proj_bias, const torch::Tensor &norm_weight, const torch::Tensor &norm_bias, bool training_mode, bool prelayernorm) { CHECK_INPUT(input); CHECK_INPUT(input_mask); const T *input_ptr = (const T *)input.data_ptr(); const T *input_mask_ptr = (const T *)input_mask.data_ptr(); auto output = torch::empty_like(input); T *out_ptr = (T *)output.data_ptr(); std::shared_ptr> layer = std::static_pointer_cast>( s_multihead_attention[layer_id]); layer->set_cur_batch_shape(input.size(0), input.size(1)); layer->SetTrainingMode(training_mode); layer->_attn_qkvw_ptr = (const T *)in_proj_weight.data_ptr(); layer->_attn_qkvb_ptr = (const T *)in_proj_bias.data_ptr(); layer->_attn_ow_ptr = (const T *)out_proj_weight.data_ptr(); layer->_attn_ob_ptr = (const T *)out_proj_bias.data_ptr(); layer->_attn_nw_ptr = (const T *)norm_weight.data_ptr(); layer->_attn_nb_ptr = (const T *)norm_bias.data_ptr(); layer->Forward(input_ptr, input_mask_ptr, out_ptr); return {output}; } template std::vector multihead_attention_bw( int layer_id, const torch::Tensor &grad_dec_output, const torch::Tensor &output, const torch::Tensor &input, const torch::Tensor &input_mask, const torch::Tensor &in_proj_weight, const torch::Tensor &in_proj_bias, const torch::Tensor &out_proj_weight, const torch::Tensor &out_proj_bias, const torch::Tensor &norm_weight, const torch::Tensor &norm_bias) { auto g_output = grad_dec_output.contiguous(); CHECK_INPUT(g_output); CHECK_INPUT(output); CHECK_INPUT(input); CHECK_INPUT(input_mask); auto grad_input = torch::empty_like(input); auto grad_in_proj_weight = torch::empty_like(in_proj_weight); auto grad_in_proj_bias = torch::empty_like(in_proj_bias); auto grad_out_proj_weight = torch::empty_like(out_proj_weight); auto grad_out_proj_bias = torch::empty_like(out_proj_bias); auto grad_norm_weight = torch::empty_like(norm_weight); auto grad_norm_bias = torch::empty_like(norm_bias); // inputs. const T *grad_dec_output_ptr = (const T *)g_output.data_ptr(); const T *input_ptr = (const T *)input.data_ptr(); const T *output_ptr = (const T *)output.data_ptr(); const T *input_mask_ptr = (const T *)input_mask.data_ptr(); // outputs. T *grad_input_ptr = (T *)grad_input.data_ptr(); std::shared_ptr> layer = std::static_pointer_cast>( s_multihead_attention[layer_id]); layer->set_cur_batch_shape(g_output.size(0), g_output.size(1)); layer->_grad_attn_qkvw_ptr = (T *)grad_in_proj_weight.data_ptr(); layer->_grad_attn_qkvb_ptr = (T *)grad_in_proj_bias.data_ptr(); layer->_grad_attn_ow_ptr = (T *)grad_out_proj_weight.data_ptr(); layer->_grad_attn_ob_ptr = (T *)grad_out_proj_bias.data_ptr(); layer->_grad_attn_nw_ptr = (T *)grad_norm_weight.data_ptr(); layer->_grad_attn_nb_ptr = (T *)grad_norm_bias.data_ptr(); layer->Backward(grad_dec_output_ptr, input_ptr, output_ptr, input_mask_ptr, grad_input_ptr); return {grad_input, grad_in_proj_weight, grad_in_proj_bias, grad_out_proj_weight, grad_out_proj_bias, grad_norm_weight, grad_norm_bias}; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("multihead_attention_fw_fp32", &multihead_attention_fw, "Multi-head Attention forward with fp32 (CUDA)"); m.def("multihead_attention_fw_fp16", &multihead_attention_fw<__half>, "Multi-head Attention forward with fp16 (CUDA)"); m.def("multihead_attention_bw_fp32", &multihead_attention_bw, "Multi-head Attention backward with fp32 (CUDA)"); m.def("multihead_attention_bw_fp16", &multihead_attention_bw<__half>, "Multi-head Attention backward with fp16 (CUDA)"); m.def("create_multihead_attention_fp32", &create_multihead_attention, "Create Multi-head Attention with fp32 (CUDA)"); m.def("create_multihead_attention_fp16", &create_multihead_attention<__half>, "Create Multi-head Attention with fp16 (CUDA)"); }