import torch from typing import List from torch.fx import symbolic_trace from torch.fx.node import Node from colossalai.fx.passes.split_module import split_module from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.device.device_mesh import DeviceMesh from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec import builtins import operator from copy import deepcopy def apply(*args, **kwargs): shape_consistency_manager = ShapeConsistencyManager() return shape_consistency_manager.apply(*args, **kwargs) def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], device_mesh): mod_graph = gm.graph nodes = tuple(mod_graph.nodes) # the dict to get origin sharding spec of node origin_node_sharding_spec_dict = {} for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)): strategies_vector = node.strategies_vector setattr(node, 'best_strategy', strategies_vector[strategy_index]) setattr(node, 'sharding_spec', strategies_vector[strategy_index].output_sharding_spec) origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].output_sharding_spec # apply the sharding spec of parameters for node in nodes: if node.op == 'call_module': target_module = node.graph.owning_module.get_submodule(node.target) origin_sharding_spec = ShardingSpec(device_mesh, target_module.weight.shape, {}) setattr(target_module.weight, 'sharding_spec', origin_sharding_spec) target_weight_sharding_spec = node.best_strategy.input_shardings[1] target_module.weight.data = target_module.weight.data.permute((1, 0, 2, 3)) apply(target_module.weight, target_weight_sharding_spec) target_module.weight.data = target_module.weight.data.permute((1, 0, 2, 3)) # the dict to get input sharding specs of user node sharding_spec_convert_dict = {} for index, node in enumerate(nodes): target_sharding_specs = [] for user_node in node.strategies_vector.successor_nodes: node_index = user_node.strategies_vector.predecessor_nodes.index(node) target_sharding_spec = user_node.best_strategy.input_shardings[node_index] target_sharding_specs.append(target_sharding_spec) sharding_spec_convert_dict[index] = target_sharding_specs # add above dicts into graph for node in nodes: if node.op != 'placeholder': with mod_graph.inserting_before(node): input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict') origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict') break return sharding_spec_convert_dict, origin_node_sharding_spec_dict def shape_consistency_pass(gm: torch.fx.GraphModule): mod_graph = gm.graph nodes = tuple(mod_graph.nodes) input_dict_node = None origin_dict_node = None # mapping the node into the origin graph index node_to_index_dict = {} index = 0 for node in nodes: if node.target == 'sharding_spec_convert_dict': input_dict_node = node continue if node.target == 'origin_node_sharding_spec_dict': origin_dict_node = node continue if not hasattr(node, 'best_strategy'): continue node_to_index_dict[node] = index index += 1 assert input_dict_node is not None # add shape consistency apply function into graph for node in nodes: if not hasattr(node, 'best_strategy'): continue with mod_graph.inserting_after(node): origin_spec_node = mod_graph.create_node('call_function', operator.getitem, args=(origin_dict_node, node_to_index_dict[node])) with mod_graph.inserting_after(origin_spec_node): set_sharding_spec_node = mod_graph.create_node('call_function', builtins.setattr, args=(node, 'sharding_spec', origin_spec_node)) for user_node in node.strategies_vector.successor_nodes: node_index = user_node.strategies_vector.predecessor_nodes.index(node) with mod_graph.inserting_before(user_node): input_specs_node = mod_graph.create_node('call_function', operator.getitem, args=(input_dict_node, node_to_index_dict[node])) with mod_graph.inserting_before(user_node): sharding_spec_node = mod_graph.create_node('call_function', operator.getitem, args=(input_specs_node, node_index)) with mod_graph.inserting_before(user_node): shape_consistency_node = mod_graph.create_node('call_function', apply, args=(node, sharding_spec_node)) return gm