import logging import os from functools import partial from pathlib import Path from types import MethodType from typing import Callable, Iterator, List, Optional, Tuple import torch import torch.nn as nn from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler as LRScheduler from torch.utils._pytree import tree_map from torch.utils.data import DataLoader from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO from colossalai.checkpoint_io.utils import ( get_optimizer_base_filenames, get_shard_filename, load_param_groups_into_optimizer, load_shard_state_dict, load_states_into_optimizer, save_param_groups, save_state_dict, sharded_optimizer_loading_epilogue, unwrap_optimizer, ) from colossalai.interface import AMPModelMixin, ModelWrapper, OptimizerWrapper from colossalai.utils import get_current_device from colossalai.zero import LowLevelZeroOptimizer from .dp_plugin_base import DPPluginBase from .torch_ddp_plugin import TorchDDPCheckpointIO __all__ = ["LowLevelZeroPlugin"] def _convert_floating_point(x, dtype: torch.dtype = torch.float16): if isinstance(x, torch.Tensor) and torch.is_floating_point(x): return x.to(dtype) return x SUPPORTED_PRECISION = ["fp16", "bf16", "fp32"] class LowLevelZeroModel(ModelWrapper, AMPModelMixin): def __init__(self, module: nn.Module, precision: str) -> None: super().__init__(module) self.dtype = None if precision == "fp16": self.dtype = torch.float16 elif precision == "bf16": self.dtype = torch.bfloat16 if self.dtype is not None: module = module.to(self.dtype) module = module.to(get_current_device()) self.module = module self.convert_fn = None if self.dtype is not None: self.convert_fn = partial(_convert_floating_point, dtype=self.dtype) def forward(self, *args, **kwargs): if self.convert_fn is not None: args = tree_map(self.convert_fn, args) kwargs = tree_map(self.convert_fn, kwargs) return super().forward(*args, **kwargs) def unwrap(self): # TODO(ver217): this is a workaround for loading model return self class LowLevelZeroCheckpointIO(TorchDDPCheckpointIO): def save_unsharded_optimizer(self, optimizer: OptimizerWrapper, checkpoint: str, gather_dtensor: bool = False): """Save optimizer to checkpoint but only on master process. Args: optimizer (OptimizerWrapper): Optimizer to save state_dict checkpoint (str): Path to save checkpoint gather_dtensor (bool): Whether to gather_dtensor, not used """ # the `state_dict` in LowLevelZeroOptimizer has communication # if only the master rank collect state_dict and save, # the communication on each rank would not match state_dict = optimizer.state_dict() if self.coordinator.is_master(): save_state_dict(state_dict, checkpoint, use_safetensors=False) def save_sharded_optimizer( self, optimizer: OptimizerWrapper, checkpoint: str, gather_dtensor: bool = False, prefix: str = None, size_per_shard: int = 1024, ): """ Save sharded Zero-optimizer checkpoint under the given checkpointing path. The following files will be created under the path: - An index file (pytorch_optim.bin.index.json) containing a map between optimizer states and file names - A group file (pytorch_optim_group.bin) recording information of param_groups - Multiple files (pytorch_optim-000XX.bin) that store state tensors of optimizer in a sharding way Args: optimizer (OptimizerWrapper): Optimizer to save sharded state_dict checkpoint (str): Path to save optimizer state_dict gather_dtensor (bool): Whether to gather_dtensor, not used prefix (str): Perfix of file to save size_per_shard (int): Max file size of each file that store state tensors """ if os.path.isfile(checkpoint): logging.error(f"Provided path ({checkpoint}) should be a directory, not a file") return Path(checkpoint).mkdir(parents=True, exist_ok=True) # state_dict only provide only 'param_groups' state_dict = optimizer.optim.state_dict() # state shard would be handled by the low-level zero optimizer sharded_state = optimizer.state_dict_shard(max_shard_size=size_per_shard) # Preparing file paths and index file. states_name, save_index_file, param_group_file = get_optimizer_base_filenames(prefix) index_file = CheckpointIndexFile(checkpoint) # Store the information of param groups to param_group_file. index_file.append_meta_data("param_groups", param_group_file) group_file_path = os.path.join(checkpoint, param_group_file) save_param_groups(state_dict, group_file_path) # Save shards of optimizer states. total_size = 0 for idx, shard_pair in enumerate(sharded_state): shard, current_size = shard_pair shard_file = get_shard_filename(states_name, idx) total_size = total_size + current_size for param_id in shard.keys(): index_file.append_weight_map(str(param_id), shard_file) checkpoint_file_path = os.path.join(checkpoint, shard_file) if self.coordinator.is_master(): save_state_dict(shard, checkpoint_file_path, use_safetensors=False) # Wrap up index file. index_file.append_meta_data("total_size", total_size) if self.coordinator.is_master(): index_file.write_index_file(save_index_file) logging.info( f"The optimizer is going to be split to checkpoint shards. " f"You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) def load_sharded_optimizer(self, optimizer: OptimizerWrapper, index_file_path: str, prefix: str): """Load sharded optimizer with the given path to index file. Args: optimizer (OptimizerWrapper): Optimizer to load state_dict index_file_path (str): Path to the index file prefix (str): Not used. """ # If optimizer is wrapped, unwrap it. if isinstance(optimizer, OptimizerWrapper): optimizer = unwrap_optimizer(optimizer) # Read checkpoint index file. ckpt_index_file = CheckpointIndexFile.from_file(index_file_path) # Load param_groups param_group_path = ckpt_index_file.get_param_group_filename() if param_group_path is None: raise RuntimeError( f"Invalid index file path {index_file_path} for an optimizer. \ Lacking param group file under current directory." ) id_map = load_param_groups_into_optimizer(optimizer, param_group_path) checkpoint_files, _ = ckpt_index_file.get_checkpoint_filenames() for shard_file in checkpoint_files: state_dict = load_shard_state_dict(Path(shard_file), use_safetensors=False) # shard state dict for param_idx, state in state_dict.items(): for k, v in state.items(): if isinstance(v, torch.Tensor) and k != "step": padding_size = ( self.coordinator.world_size - v.numel() % self.coordinator.world_size ) % self.coordinator.world_size with torch.no_grad(): v = v.flatten() if padding_size > 0: v = torch.nn.functional.pad(v, [0, padding_size]) v_list = v.split(v.numel() // self.coordinator.world_size) state_dict[param_idx][k] = v_list[self.coordinator.rank].detach().clone() load_states_into_optimizer(optimizer, state_dict, id_map) sharded_optimizer_loading_epilogue(optimizer) def save_unsharded_model( self, model: LowLevelZeroModel, checkpoint: str, gather_dtensor: bool, use_safetensors: bool ): assert isinstance(model, LowLevelZeroModel) super().save_unsharded_model(model.module, checkpoint, gather_dtensor, use_safetensors) def save_sharded_model( self, model: nn.Module, checkpoint_path: str, gather_dtensor: bool = True, prefix: Optional[str] = None, max_shard_size: int = 1024, use_safetensors: bool = False, ): assert isinstance(model, LowLevelZeroModel) super().save_sharded_model( model.module, checkpoint_path, gather_dtensor, prefix, max_shard_size, use_safetensors ) def load_unsharded_model(self, model: LowLevelZeroModel, checkpoint: str, strict: bool = True): assert isinstance(model, LowLevelZeroModel) super().load_unsharded_model(model.module, checkpoint, strict) model.update_master_params() def load_sharded_model( self, model: LowLevelZeroModel, checkpoint_index_file: Path, strict: bool = False, use_safetensors: bool = False, load_sub_module: bool = True, ): assert isinstance(model, LowLevelZeroModel) super().load_sharded_model(model.module, checkpoint_index_file, strict, use_safetensors, load_sub_module) model.update_master_params() class LowLevelZeroPlugin(DPPluginBase): """ Plugin for low level zero. Example: >>> from colossalai.booster import Booster >>> from colossalai.booster.plugin import LowLevelZeroPlugin >>> >>> model, train_dataset, optimizer, criterion = ... >>> plugin = LowLevelZeroPlugin() >>> train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8) >>> booster = Booster(plugin=plugin) >>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion) Args: strage (int, optional): ZeRO stage. Defaults to 1. precision (str, optional): precision. Support 'fp16', 'bf16' and 'fp32'. Defaults to 'fp16'. initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**32. min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1. growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2. backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5. growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000. hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2. max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32. max_norm (float, optional): max_norm used for `clip_grad_norm`. You should notice that you shall not do clip_grad_norm by yourself when using ZeRO DDP. The ZeRO optimizer will take care of clip_grad_norm. norm_type (float, optional): norm_type used for `clip_grad_norm`. reduce_bucket_size_in_m (int, optional): grad reduce bucket size in M. Defaults to 12. communication_dtype (torch.dtype, optional): communication dtype. If not specified, the dtype of param will be used. Defaults to None. overlap_communication (bool, optional): whether to overlap communication and computation. Defaults to True. cpu_offload (bool, optional): whether to offload grad, master weight and optimizer state to cpu. Defaults to False. verbose (bool, optional): verbose mode. Debug info including grad overflow will be printed. Defaults to False. """ def __init__( self, stage: int = 1, precision: str = "fp16", initial_scale: float = 2**32, min_scale: float = 1, growth_factor: float = 2, backoff_factor: float = 0.5, growth_interval: int = 1000, hysteresis: int = 2, max_scale: float = 2**32, max_norm: float = 0.0, norm_type: float = 2.0, reduce_bucket_size_in_m: int = 12, communication_dtype: Optional[torch.dtype] = None, overlap_communication: bool = True, cpu_offload: bool = False, verbose: bool = False, ) -> None: super().__init__() assert stage in (1, 2), f"LowLevelZeroPlugin only supports stage 1/2 training" assert precision in SUPPORTED_PRECISION, f"LowLevelZeroPlugin only supports {SUPPORTED_PRECISION} training" assert norm_type == 2.0, f"LowLevelZeroPlugin only supports norm_type=2.0 now" self.stage = stage self.precision = precision self.zero_optim_kwargs = dict( initial_scale=initial_scale, growth_factor=growth_factor, backoff_factor=backoff_factor, growth_interval=growth_interval, hysteresis=hysteresis, min_scale=min_scale, max_scale=max_scale, clip_grad_norm=max_norm, reduce_bucket_size=reduce_bucket_size_in_m * 1024 * 1024, communication_dtype=communication_dtype, overlap_communication=overlap_communication, cpu_offload=cpu_offload, partition_grad=(stage == 2), ) self.verbose = verbose # set class name with stage, for better error message setattr(self.__class__, "__name__", f"LowLevelZeroPlugin_ZeRO-{stage}") def support_no_sync(self) -> bool: return self.stage == 1 def control_precision(self) -> bool: return True def supported_precisions(self) -> List[str]: return SUPPORTED_PRECISION def control_device(self) -> bool: return True def supported_devices(self) -> List[str]: return ["cuda"] def configure( self, model: nn.Module, optimizer: Optional[Optimizer] = None, criterion: Optional[Callable] = None, dataloader: Optional[DataLoader] = None, lr_scheduler: Optional[LRScheduler] = None, ) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]: if not isinstance(model, ModelWrapper): model = LowLevelZeroModel(model, self.precision) if optimizer is not None and not isinstance(optimizer, OptimizerWrapper): optimizer: LowLevelZeroOptimizer = LowLevelZeroOptimizer( optimizer, **self.zero_optim_kwargs, verbose=self.verbose ) # inject update_master_params model.update_master_params = MethodType(optimizer.update_master_params, model) return model, optimizer, criterion, dataloader, lr_scheduler def control_checkpoint_io(self) -> bool: return True def get_checkpoint_io(self) -> CheckpointIO: return LowLevelZeroCheckpointIO() def no_sync(self, model: nn.Module, optimizer: OptimizerWrapper) -> Iterator[None]: assert isinstance(optimizer, LowLevelZeroOptimizer) return optimizer.optim.no_sync()