import gc import logging import os from pathlib import Path from typing import Callable, Iterator, List, Optional, Tuple import torch import torch.nn as nn from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler as LRScheduler from torch.utils.data import DataLoader from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO, GeneralCheckpointIO from colossalai.checkpoint_io.utils import ( get_model_base_filenames, get_optimizer_base_filenames, load_shard_state_dict, save_config_file, save_state_dict, save_state_dict_shards, ) from colossalai.cluster import DistCoordinator from colossalai.interface import ModelWrapper, OptimizerWrapper from colossalai.utils import get_current_device from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.memory_tracer import MemStats from .dp_plugin_base import DPPluginBase __all__ = ["GeminiPlugin"] SUPPORTED_PRECISION = ["fp16", "bf16"] PRECISION_STR_TO_DTYPE = {"fp16": torch.half, "bf16": torch.bfloat16} class GeminiCheckpointIO(GeneralCheckpointIO): def __init__(self) -> None: super().__init__() self.coordinator = DistCoordinator() def save_unsharded_model(self, model: GeminiDDP, checkpoint: str, gather_dtensor: bool, use_safetensors: bool): """ Save sharded model to checkpoint but only on master process. The model should be unwrapped in self.load_model via ModelWrapper.unwrap. As there is communication when getting state dict, model.state_dict() must be called on all processes. """ state_dict = model.state_dict(only_rank_0=True) if self.coordinator.is_master(): save_state_dict(state_dict, checkpoint, use_safetensors) def load_unsharded_model(self, model: GeminiDDP, checkpoint: str, strict: bool = True): """ Load model from checkpoint with automatic unwrapping. The model should be unwrapped in self.load_model via ModelWrapper.unwrap. """ super().load_unsharded_model(model, checkpoint, strict=strict) def save_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str, gather_dtensor: bool): """ Save unsharded optimizer state dict to checkpoint. After calling optimizer.state_dict(), the complete optimizer states will be collected on master rank. As there is communication when getting state dict, optimizer.state_dict() must be called on all processes. The saving process will only be executed by master rank. """ state_dict = optimizer.state_dict() if self.coordinator.is_master(): save_state_dict(state_dict, checkpoint, use_safetensors=False) def load_unsharded_optimizer(self, optimizer: Optimizer, checkpoint: str): """ Loading unsharded optimizer from checkpoint file. For each process, only loading optimizer states of parameters it controls. """ super().load_unsharded_optimizer(optimizer, checkpoint) def save_sharded_model( self, model: GeminiDDP, checkpoint_path: str, gather_dtensor: bool = False, prefix: Optional[str] = None, max_shard_size: int = 1024, use_safetensors: bool = False, ): """ Save sharded model. As there is communication when getting state dict, model.state_dict() must be called on all processes. """ if os.path.isfile(checkpoint_path): logging.error(f"Provided path ({checkpoint_path}) should be a directory, not a file") return Path(checkpoint_path).mkdir(parents=True, exist_ok=True) state_dict_shard = model.state_dict_shard(max_shard_size=max_shard_size, only_rank_0=True, dtype=torch.float32) weights_name, save_index_file = get_model_base_filenames(prefix, use_safetensors) index_file = CheckpointIndexFile(checkpoint_path) # Save shards of optimizer states. is_master = self.coordinator.is_master() total_size = save_state_dict_shards( sharded_state_dict=state_dict_shard, checkpoint=checkpoint_path, index_file=index_file, base_filename=weights_name, is_master=is_master, use_safetensors=use_safetensors, ) # only save the index file on the master rank if self.coordinator.is_master(): index_file.append_meta_data("total_size", total_size) index_file.write_index_file(save_index_file) save_config_file(model.module, checkpoint_path) logging.info( f"The model is split into checkpoint shards. " f"You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) def load_sharded_model( self, model: GeminiDDP, checkpoint_index_file: Path, strict: bool = False, use_safetensors: bool = False ): """ Load shard model, load model from multiple files. """ return super().load_sharded_model(model, checkpoint_index_file, strict, use_safetensors, load_sub_module=False) def save_sharded_optimizer( self, optimizer: Optimizer, checkpoint: Path, gather_dtensor: bool, prefix: str, size_per_shard: int ): """ Save sharded optimizer state dict to checkpoint folder. As there is communication when getting state dict, this must be called on all processes. """ assert isinstance(optimizer, GeminiOptimizer) if os.path.isfile(checkpoint): logging.error(f"Provided path ({checkpoint}) should be a directory, not a file") return Path(checkpoint).mkdir(parents=True, exist_ok=True) # Preparing file paths and index file. states_name, save_index_file, param_group_file = get_optimizer_base_filenames(prefix) index_file = CheckpointIndexFile(checkpoint) # Store the information of param groups to param_group_file. index_file.append_meta_data("param_groups", param_group_file) group_file_path = os.path.join(checkpoint, param_group_file) param_groups = optimizer.get_param_groups_for_saving() torch.save(param_groups, group_file_path) # States are broken into shards within max_shard_size. state_dict_shard = optimizer.state_shard(prefix=prefix, max_shard_size=size_per_shard, only_rank_0=True) # Save shards of optimizer states. is_master = self.coordinator.is_master() total_size = save_state_dict_shards( sharded_state_dict=state_dict_shard, checkpoint=checkpoint, index_file=index_file, base_filename=states_name, is_master=is_master, use_safetensors=False, ) # Wrap up index file. Only save it on master rank. if self.coordinator.is_master(): index_file.append_meta_data("total_size", total_size) index_file.write_index_file(save_index_file) logging.info( f"The optimizer is going to be split to checkpoint shards. " f"You can find where each parameters has been saved in the " f"index located at {save_index_file}." ) def load_sharded_optimizer(self, optimizer: Optimizer, checkpoint_index_file: Path, prefix: str): """ Loading sharded optimizer from checkpoint folder, with index file given. For each process, only loading optimizer states of parameters it controls. """ if not os.path.isfile(checkpoint_index_file): logging.error(f"Provided path ({checkpoint_index_file}) should be a file") assert isinstance(optimizer, GeminiOptimizer) # Read checkpoint index file. ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file) # Load param_groups. param_group_path = ckpt_index_file.get_param_group_filename() if param_group_path is None: raise RuntimeError( f"Invalid index file path {checkpoint_index_file} for an optimizer. \ Lacking param group file under current directory." ) saved_param_groups = torch.load(param_group_path) optimizer.load_param_groups(saved_param_groups) checkpoint_files, _ = ckpt_index_file.get_checkpoint_filenames() # Load optimizer states from shard files under checkpoint path. # For each file, only load the states managed by current process. for shard_file in checkpoint_files: state_dict_shard = load_shard_state_dict(Path(shard_file), use_safetensors=False) optimizer.load_param_states(state_dict_shard) del state_dict_shard gc.collect() optimizer.optimizer_loading_epilogue() def save_lr_scheduler(self, lr_scheduler: LRScheduler, checkpoint: str): """ Save model to checkpoint but only on master process. """ if self.coordinator.is_master(): super().save_lr_scheduler(lr_scheduler, checkpoint) class GeminiPlugin(DPPluginBase): """ Plugin for Gemini. Example: >>> from colossalai.booster import Booster >>> from colossalai.booster.plugin import GeminiPlugin >>> >>> model, train_dataset, optimizer, criterion = ... >>> plugin = GeminiPlugin() >>> train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=8) >>> booster = Booster(plugin=plugin) >>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion) Args: chunk_config_dict (dict, optional): chunk configuration dictionary. chunk_init_device (torch.device, optional): device to initialize the chunk. placement_policy (str, optional): "static" and "auto". Defaults to "static". shard_param_frac (float, optional): fraction of parameters to be sharded. Only for "static" placement. If `shard_param_frac` is 1.0, it's equal to zero-3. If `shard_param_frac` is 0.0, it's equal to zero-2. Defaults to 1.0. offload_optim_frac (float, optional): fraction of optimizer states to be offloaded. Only for "static" placement. If `shard_param_frac` is 1.0 and `offload_optim_frac` is 0.0, it's equal to old "cuda" placement. Defaults to 0.0. offload_param_frac (float, optional): fraction of parameters to be offloaded. Only for "static" placement. For efficiency, this argument is useful only when `shard_param_frac` is 1.0 and `offload_optim_frac` is 1.0. If `shard_param_frac` is 1.0, `offload_optim_frac` is 1.0 and `offload_param_frac` is 1.0, it's equal to old "cpu" placement. When using static placement, we recommend users to tune `shard_param_frac` first and then `offload_optim_frac`. Defaults to 0.0. warmup_non_model_data_ratio (float, optional): ratio of expected non-model data memory during warmup. Only for "auto" placement. Defaults to 0.8. steady_cuda_cap_ratio (float, optional): ratio of allowed cuda capacity for model data during steady state. Only for "auto" placement. Defaults to 0.9. precision (str, optional): precision. Support 'fp16' and 'bf16'. Defaults to 'fp16'. pin_memory (bool, optional): use pin memory on CPU. Defaults to False. force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False. strict_ddp_mode (bool, optional): use strict ddp mode (only use dp without other parallelism). Defaults to False. search_range_m (int, optional): chunk size searching range divided by 2^20. Defaults to 32. hidden_dim (int, optional): the hidden dimension of DNN. Users can provide this argument to speed up searching. If users do not know this argument before training, it is ok. We will use a default value 1024. min_chunk_size_m (float, optional): the minimum chunk size divided by 2^20. If the aggregate size of parameters is still smaller than the minimum chunk size, all parameters will be compacted into one small chunk. memstats (MemStats, optional) the memory statistics collector by a runtime memory tracer. gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward) which will be used when using hybrid CPU optimizer. This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto". Defaults to 0.0. initial_scale (float, optional): Initial scale used by DynamicGradScaler. Defaults to 2**16. min_scale (float, optional): Min scale used by DynamicGradScaler. Defaults to 1. growth_factor (float, optional): growth_factor used by DynamicGradScaler. Defaults to 2. backoff_factor (float, optional): backoff_factor used by DynamicGradScaler. Defaults to 0.5. growth_interval (float, optional): growth_interval used by DynamicGradScaler. Defaults to 1000. hysteresis (float, optional): hysteresis used by DynamicGradScaler. Defaults to 2. max_scale (int, optional): max_scale used by DynamicGradScaler. Defaults to 2**32. max_norm (float, optional): max_norm used for `clip_grad_norm`. You should notice that you shall not do clip_grad_norm by yourself when using ZeRO DDP. The ZeRO optimizer will take care of clip_grad_norm. norm_type (float, optional): norm_type used for `clip_grad_norm`. verbose (bool, optional): verbose mode. Debug info including chunk search result will be printed. Defaults to False. """ def __init__( self, chunk_config_dict: Optional[dict] = None, chunk_init_device: Optional[torch.device] = None, placement_policy: str = "static", shard_param_frac: float = 1.0, # only for static placement offload_optim_frac: float = 0.0, # only for static placement offload_param_frac: float = 0.0, # only for static placement warmup_non_model_data_ratio: float = 0.8, # only for auto placement steady_cuda_cap_ratio: float = 0.9, # only for auto placement precision: str = "fp16", pin_memory: bool = False, force_outputs_fp32: bool = False, strict_ddp_mode: bool = False, search_range_m: int = 32, hidden_dim: Optional[int] = None, min_chunk_size_m: float = 32, memstats: Optional[MemStats] = None, gpu_margin_mem_ratio: float = 0.0, initial_scale: float = 2**16, min_scale: float = 1, growth_factor: float = 2, backoff_factor: float = 0.5, growth_interval: int = 1000, hysteresis: int = 2, max_scale: float = 2**32, max_norm: float = 0.0, norm_type: float = 2.0, verbose: bool = False, ) -> None: super().__init__() assert precision in SUPPORTED_PRECISION, f"precision {precision} is not supported" self.gemini_config = dict( chunk_config_dict=chunk_config_dict, chunk_init_device=(chunk_init_device or get_current_device()), placement_policy=placement_policy, shard_param_frac=shard_param_frac, offload_optim_frac=offload_optim_frac, offload_param_frac=offload_param_frac, warmup_non_model_data_ratio=warmup_non_model_data_ratio, steady_cuda_cap_ratio=steady_cuda_cap_ratio, pin_memory=pin_memory, force_outputs_fp32=force_outputs_fp32, strict_ddp_mode=strict_ddp_mode, search_range_m=search_range_m, hidden_dim=hidden_dim, min_chunk_size_m=min_chunk_size_m, memstats=memstats, mixed_precision=PRECISION_STR_TO_DTYPE[precision], ) self.zero_optim_config = dict( gpu_margin_mem_ratio=gpu_margin_mem_ratio, ) self.optim_kwargs = dict( initial_scale=initial_scale, growth_factor=growth_factor, backoff_factor=backoff_factor, growth_interval=growth_interval, hysteresis=hysteresis, min_scale=min_scale, max_scale=max_scale, max_norm=max_norm, norm_type=norm_type, ) self.verbose = verbose def support_no_sync(self) -> bool: return False def control_precision(self) -> bool: return True def supported_precisions(self) -> List[str]: return SUPPORTED_PRECISION def control_device(self) -> bool: return True def supported_devices(self) -> List[str]: return ["cuda"] def configure( self, model: nn.Module, optimizer: Optional[Optimizer] = None, criterion: Optional[Callable] = None, dataloader: Optional[DataLoader] = None, lr_scheduler: Optional[LRScheduler] = None, ) -> Tuple[nn.Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]: if not isinstance(model, ModelWrapper): # convert model to sync bn # FIXME(ver217): gemini does not support sync bn # In torch/nn/modules/_functions.py, line 22, ``mean, invstd = torch.batch_norm_stats(input, eps)`` will get fp32 mean and invstd even though the input is fp16. # This inconsistency of dtype will cause the error. # We have two possible solutions: # 1. keep batch norm always in fp32. This is hard for gemini, as it use chunks. # 2. patch sync bn or write a new on. This is relatively easy, but we need to test it. # model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None) # wrap the model with Gemini model = GeminiDDP(model, **self.gemini_config, verbose=self.verbose) if optimizer is not None and not isinstance(optimizer, OptimizerWrapper): optimizer = GeminiOptimizer( optimizer, model.unwrap(), **self.zero_optim_config, **self.optim_kwargs, verbose=self.verbose ) return model, optimizer, criterion, dataloader, lr_scheduler def control_checkpoint_io(self) -> bool: return True def get_checkpoint_io(self) -> CheckpointIO: return GeminiCheckpointIO() def no_sync(self, model: nn.Module, optimizer: OptimizerWrapper) -> Iterator[None]: raise NotImplementedError