# NVMe offload 作者: Hongxin Liu **前置教程:** - [基于Chunk内存管理的零冗余优化器 (ZeRO)](../features/zero_with_chunk.md) ## 引言 如果模型具有`N`个参数,在使用 Adam 时,优化器状态具有`8N`个参数。对于十亿规模的模型,优化器状态至少需要 32 GB 内存。 GPU显存限制了我们可以训练的模型规模,这称为GPU显存墙。如果我们将优化器状态 offload 到磁盘,我们可以突破 GPU 内存墙。 我们实现了一个用户友好且高效的异步 Tensor I/O 库:[TensorNVMe](https://github.com/hpcaitech/TensorNVMe)。有了这个库,我们可以简单地实现 NVMe offload。 > 该库与各种磁盘(HDD、SATA SSD 和 NVMe SSD)兼容。由于 HDD 或 SATA SSD 的 I/O 带宽较低,建议仅在 NVMe 磁盘上使用此库。 在优化参数时,我们可以将优化过程分为三个阶段:读取、计算和 offload。我们以流水线的方式执行优化过程,这可以重叠计算和 I/O。
优化过程
## 使用 首先,请确保您安装了 [TensorNVMe](https://github.com/hpcaitech/TensorNVMe): ```shell pip install packaging pip install tensornvme ``` 我们为 Adam ([CPUAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.cpu_adam.html) 和 [HybridAdam](https://colossalai.readthedocs.io/en/latest/colossalai/colossalai.nn.optimizer.hybrid_adam.html)) 实现了优化器状态的 NVMe offload。 ```python from colossalai.nn.optimizer import CPUAdam, HybridAdam optimizer = HybridAdam(model.parameters(), lr=1e-3, nvme_offload_fraction=1.0, nvme_offload_dir='./') ``` `nvme_offload_fraction` 是要 offload 到 NVMe 的优化器状态的比例。 `nvme_offload_dir` 是保存 NVMe offload 文件的目录。如果 `nvme_offload_dir` 为 `None`,将使用随机临时目录。 它与 ColossalAI 中的所有并行方法兼容。