import os import pytest import torch import colossalai from colossalai.logging import disable_existing_loggers from colossalai.testing import ( assert_hf_output_close, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo from tests.test_shardformer.test_model._utils import build_model, check_grad, check_state_dict, run_forward os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true' def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn): org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) # forward check assert_hf_output_close(org_output, shard_output, ignore_keys=['past_key_values'], rtol=1e-5) # run backward org_loss.backward() shard_loss.backward() assert torch.allclose(org_loss, shard_loss, atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" # unwrap model if hasattr(org_model, 'model'): llama_model = org_model.model shard_llama_model = sharded_model.model else: llama_model = org_model shard_llama_model = sharded_model # check grad col_layer_for_check = ['layers[0].self_attn.q_proj', 'embed_tokens'] row_layer_for_check = ['layers[0].self_attn.o_proj'] check_grad(llama_model, shard_llama_model, col_layer_for_check, atol=1e-6, rtol=1e-4, dim=0, verbose=False) check_grad(llama_model, shard_llama_model, row_layer_for_check, atol=1e-6, rtol=1e-4, dim=1, verbose=False) @parameterize('enable_fused_normalization', [True, False]) @parameterize('enable_tensor_parallelism', [True, False]) @parameterize('enable_flash_attention', [True, False]) @parameterize('use_lazy_init', [False, True]) def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, use_lazy_init): sub_model_zoo = model_zoo.get_sub_registry('transformers_llama') for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, use_lazy_init) check_state_dict(org_model, sharded_model, name=name) check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) torch.cuda.empty_cache() def check_llama(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_gpt2_llama() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_llama(): spawn(check_llama, 4) if __name__ == "__main__": test_llama()