import pytest import torch import colossalai from colossalai.cluster import ProcessGroupMesh from colossalai.logging import disable_existing_loggers from colossalai.pipeline.stage_manager import PipelineStageManager from colossalai.shardformer.policies.auto_policy import get_autopolicy from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor from colossalai.testing import ( assert_hf_output_close, clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn, ) from tests.kit.model_zoo import model_zoo from tests.test_shardformer.test_model._utils import build_model, check_grad, check_state_dict, run_forward def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn): # unwarp model if org_model.__class__.__name__ == 'BertModel': bert = org_model sharded_bert = sharded_model else: bert = org_model.bert sharded_bert = sharded_model.bert # check forward org_output, org_loss, shard_output, shard_loss = run_forward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) assert_hf_output_close(org_output, shard_output) # do backward org_loss.backward() shard_loss.backward() assert torch.allclose(org_loss, shard_loss, atol=1e-5), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}" # check grad col_layer_for_check = ['encoder.layer[0].attention.self.query', 'embeddings.word_embeddings'] row_layer_for_check = ['encoder.layer[0].attention.output.dense'] check_grad(bert, sharded_bert, col_layer_for_check, atol=1e-7, rtol=1e-3, dim=0, verbose=False) check_grad(bert, sharded_bert, row_layer_for_check, atol=1e-7, rtol=1e-3, dim=1, verbose=False) @parameterize('enable_fused_normalization', [True, False]) @parameterize('enable_tensor_parallelism', [True, False]) @parameterize('enable_flash_attention', [True, False]) @parameterize('enable_jit_fused', [True, False]) @parameterize('use_lazy_init', [False, True]) def run_bert_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused, use_lazy_init): sub_model_zoo = model_zoo.get_sub_registry('transformers_bert') for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items(): org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention, enable_jit_fused, use_lazy_init) check_state_dict(org_model, sharded_model, name=name) check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn) torch.cuda.empty_cache() def check_bert(rank, world_size, port): disable_existing_loggers() colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_bert_test() @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() def test_bert(): spawn(check_bert, 2) if __name__ == "__main__": test_bert()