# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Learning rate decay functions.""" import math class AnnealingLR(object): """Anneals the learning rate.""" def __init__(self, optimizer, max_lr, min_lr, warmup_steps, decay_steps, decay_style, use_checkpoint_lr_scheduler=True, override_lr_scheduler=False): # Class values. self.optimizer = optimizer self.max_lr = float(max_lr) self.min_lr = min_lr assert self.min_lr >= 0.0 assert self.max_lr >= self.min_lr self.warmup_steps = warmup_steps self.num_steps = 0 self.decay_steps = decay_steps assert self.decay_steps > 0 assert self.warmup_steps < self.decay_steps self.decay_style = decay_style self.override_lr_scheduler = override_lr_scheduler self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler if self.override_lr_scheduler: assert not self.use_checkpoint_lr_scheduler, 'both override and '\ 'use-checkpoint are set.' # Set the learning rate self.step(0) def get_lr(self): """Learning rate decay functions from: https://openreview.net/pdf?id=BJYwwY9ll pg. 4""" # Use linear warmup for the initial part. if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps: return self.max_lr * float(self.num_steps) / \ float(self.warmup_steps) # If the learning rate is constant, just return the initial value. if self.decay_style == 'constant': return self.max_lr # For any steps larger than `self.decay_steps`, use `self.min_lr`. if self.num_steps > self.decay_steps: return self.min_lr # If we are done with the warmup period, use the decay style. num_steps_ = self.num_steps - self.warmup_steps decay_steps_ = self.decay_steps - self.warmup_steps decay_ratio = float(num_steps_) / float(decay_steps_) assert decay_ratio >= 0.0 assert decay_ratio <= 1.0 delta_lr = self.max_lr - self.min_lr if self.decay_style == 'linear': coeff = (1.0 - decay_ratio) elif self.decay_style == 'cosine': coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0) else: raise Exception('{} decay style is not supported.'.format( self.decay_style)) return self.min_lr + coeff * delta_lr def step(self, increment=1): """Set lr for all parameters groups.""" self.num_steps += increment new_lr = self.get_lr() for group in self.optimizer.param_groups: group['lr'] = new_lr def state_dict(self): state_dict = { 'max_lr': self.max_lr, 'warmup_steps': self.warmup_steps, 'num_steps': self.num_steps, 'decay_style': self.decay_style, 'decay_steps': self.decay_steps, 'min_lr': self.min_lr } return state_dict def _check_and_set(self, cls_value, sd_value, name): """Auxiliary function for checking the values in the checkpoint and setting them.""" if self.override_lr_scheduler: return cls_value if not self.use_checkpoint_lr_scheduler: assert cls_value == sd_value, \ f'AnnealingLR: class input value {cls_value} and checkpoint' \ f'value {sd_value} for {name} do not match' return sd_value def load_state_dict(self, sd): if 'start_lr' in sd: max_lr_ = sd['start_lr'] else: max_lr_ = sd['max_lr'] self.max_lr = self._check_and_set(self.max_lr, max_lr_, 'learning rate') self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'], 'minimum learning rate') if 'warmup_iter' in sd: warmup_steps_ = sd['warmup_iter'] else: warmup_steps_ = sd['warmup_steps'] self.warmup_steps = self._check_and_set(self.warmup_steps, warmup_steps_, 'warmup iterations') if 'end_iter' in sd: decay_steps_ = sd['end_iter'] else: decay_steps_ = sd['decay_steps'] self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_, 'total number of iterations') self.decay_style = self._check_and_set(self.decay_style, sd['decay_style'], 'decay style') if 'num_iters' in sd: num_steps = sd['num_iters'] else: num_steps = sd['num_steps'] self.step(increment=num_steps)