from typing import Callable, Dict, List, Tuple, Union import torch from colossalai._analyzer._subclasses.flop_tensor import flop_mapping from colossalai._analyzer.fx.node_util import compute_size_in_bytes from colossalai.auto_parallel.tensor_shard.sharding_strategy import ( MemoryCost, OperationData, OperationDataType, ShardingStrategy, StrategiesVector, TrainCycleItem, ) from colossalai.tensor.sharding_spec import ShardingSpec from ..registry import meta_register __all__ = ['convnd_meta_info'] @meta_register.register(torch.nn.Conv1d) @meta_register.register(torch.nn.Conv2d) @meta_register.register(torch.nn.Conv3d) @meta_register.register(torch.nn.functional.conv1d) @meta_register.register(torch.nn.functional.conv2d) @meta_register.register(torch.nn.functional.conv3d) def convnd_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: """torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d meta info generator The atens graph of torch.nn.Convnd with bias is graph(): %input_2 : [#users=2] = placeholder[target=placeholder](default=) %convolution_default : [#users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%input_2, None, None, [None, None, None], [None, None, None], [None, None, None], None, [None, None, None], None), kwargs = {}) %zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%convolution_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None}) %detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {}) %convolution_backward_default : [#users=3] = call_function[target=torch.ops.aten.convolution_backward.default](args = (%zeros_like_default, %detach_default, None, [None], [None, None, None], [None, None, None], [None, None, None], None, [None, None, None], None, [None, None, None]), kwargs = {}) %detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {}) %detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {}) %detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {}) %detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {}) %detach_default_5 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {}) %detach_default_6 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_5,), kwargs = {}) The atens graph of torch.nn.Convnd without bias is graph(): %input_2 : [#users=2] = placeholder[target=placeholder](default=) %convolution_default : [#users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%input_2, None, None, [None, None], [None, None], [None, None], None, [None, None], None), kwargs = {}) %zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%convolution_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None}) %detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {}) %convolution_backward_default : [#users=2] = call_function[target=torch.ops.aten.convolution_backward.default](args = (%zeros_like_default, %detach_default, None, [None], [None, None], [None, None], [None, None], None, [None, None], None, [None, None, None]), kwargs = {}) %detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {}) %detach_default_2 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_1,), kwargs = {}) %detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%convolution_backward_default,), kwargs = {}) %detach_default_4 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_3,), kwargs = {}) Returns: Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs """ has_bias: bool = False input_tensor = args[0].data output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data if len(args) == 4: weight_tensors = [args[1].data, args[3].data] else: weight_tensors = [args[1].data] # check if conv has bias if len(weight_tensors) > 1: has_bias = True # bias tensor's shape only has one dimension if len(weight_tensors[0].shape) == 1: bias_tensor, weight_tensor = weight_tensors else: weight_tensor, bias_tensor = weight_tensors else: weight_tensor = weight_tensors[0] # construct input args for forward fwd_args = [None] * 9 # weight and input fwd_args[0] = input_tensor fwd_args[1] = weight_tensor fwd_args[2] = bias_tensor if has_bias else None # transpose indicator should be set to False fwd_args[6] = False # construct input args for backward bwd_args = [None] * 11 # weight and input bwd_args[0] = output_tensor bwd_args[1] = input_tensor bwd_args[2] = weight_tensor bwd_args[-1] = [True, True, True] if has_bias else [True, True, False] # calculate cost # the fwd op with compute cost is convolution.default # the bwd op with compute cost is convolution_backward.default # calculate compute cost fwd_compute_cost = flop_mapping[torch.ops.aten.convolution.default](fwd_args, (output_tensor,)) bwd_compute_cost = flop_mapping[torch.ops.aten.convolution_backward.default](bwd_args, (input_tensor, weight_tensor, bias_tensor)) if has_bias else \ flop_mapping[torch.ops.aten.convolution_backward.default](bwd_args, (input_tensor, weight_tensor)) compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost) # calculate memory cost # TODO: use profiler to check conv temp memory # NOTE: currently in SPMD solver we always believe that there will be a new tensor created in forward fwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, output_tensor]), parameter=compute_size_in_bytes([weight_tensor, bias_tensor]) if has_bias else compute_size_in_bytes(weight_tensor), temp=0, buffer=0) bwd_memory_cost = MemoryCost(activation=compute_size_in_bytes([input_tensor, weight_tensor, bias_tensor]) if has_bias else compute_size_in_bytes([input_tensor, weight_tensor]), parameter=compute_size_in_bytes([weight_tensor, bias_tensor]) if has_bias else compute_size_in_bytes(weight_tensor), temp=0, buffer=0) # total cost is the sum of forward and backward cost total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation, parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter) memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost) # store fwd_in, fwd_buffer, fwd_out fwd_in = [torch.zeros_like(input_tensor, device='meta')] fwd_buffer = [] fwd_out = [torch.zeros_like(output_tensor, device='meta')] return compute_cost, memory_cost, fwd_in, fwd_buffer, fwd_out