import argparse import json import os import openai from evaluator import Evaluator from utils import jload def main(args): assert len(args.answer_file_list) == len( args.model_name_list), "The number of answer files and model names should be equal!" # load config config = jload(args.config_file) if config["language"] in ["cn", "en"]: # get metric settings for all categories metrics_per_category = {} for category in config["category"].keys(): metrics_all = {} for metric_type, metrics in config["category"][category].items(): metrics_all[metric_type] = metrics metrics_per_category[category] = metrics_all battle_prompt = None if args.battle_prompt_file: battle_prompt = jload(args.battle_prompt_file) gpt_evaluation_prompt = None if args.gpt_evaluation_prompt_file: gpt_evaluation_prompt = jload(args.gpt_evaluation_prompt_file) if len(args.model_name_list) == 2 and not battle_prompt: raise Exception("No prompt file for battle provided. Please specify the prompt file for battle!") if len(args.model_name_list) == 1 and not gpt_evaluation_prompt: raise Exception( "No prompt file for gpt evaluation provided. Please specify the prompt file for gpt evaluation!") if args.gpt_model == "text-davinci-003" and args.gpt_with_reference: raise Exception( "GPT evaluation with reference is not supported for text-davinci-003. You should specify chat models such as gpt-3.5-turbo or gpt-4." ) # initialize evaluator evaluator = Evaluator(metrics_per_category, battle_prompt, gpt_evaluation_prompt, args.gpt_model, config["language"], config.get("path_for_UniEval", None), args.gpt_with_reference) if len(args.model_name_list) == 2: answers1 = jload(args.answer_file_list[0]) answers2 = jload(args.answer_file_list[1]) assert len(answers1) == len(answers2), "The number of answers for two models should be equal!" evaluator.battle(answers1=answers1, answers2=answers2) evaluator.save(args.save_path, args.model_name_list) elif len(args.model_name_list) == 1: targets = jload(args.target_file) answers = jload(args.answer_file_list[0]) assert len(targets) == len(answers), "The number of target answers and model answers should be equal!" evaluator.evaluate(answers=answers, targets=targets) evaluator.save(args.save_path, args.model_name_list) else: raise ValueError("Unsupported number of answer files and model names!") else: raise ValueError(f'Unsupported language {config["language"]}!') if __name__ == '__main__': parser = argparse.ArgumentParser(description='ColossalAI LLM evaluation pipeline.') parser.add_argument('--config_file', type=str, default=None, required=True, help='path to the file of target results') parser.add_argument('--battle_prompt_file', type=str, default=None, help='path to the prompt file for battle') parser.add_argument('--gpt_evaluation_prompt_file', type=str, default=None, help='path to the prompt file for gpt evaluation') parser.add_argument('--target_file', type=str, default=None, help='path to the target answer (ground truth) file') parser.add_argument('--answer_file_list', type=str, nargs='+', default=[], required=True, help='path to the answer files of at most 2 models') parser.add_argument('--model_name_list', type=str, nargs='+', default=[], required=True, help='the names of at most 2 models') parser.add_argument('--gpt_model', default="gpt-3.5-turbo", choices=["text-davinci-003", "gpt-3.5-turbo", "gpt-4"], help='which GPT model to use for evaluation') parser.add_argument('--gpt_with_reference', default=False, action="store_true", help='whether to include reference answer in gpt evaluation') parser.add_argument('--save_path', type=str, default="results", help='path to save evaluation results') parser.add_argument('--openai_key', type=str, default=None, required=True, help='Your openai key') args = parser.parse_args() if args.openai_key is not None: os.environ["OPENAI_API_KEY"] = args.openai_key openai.api_key = os.getenv("OPENAI_API_KEY") main(args)