import torch import torch.distributed as dist from colossalai.gemini.chunk import Chunk from colossalai.utils import get_current_device def get_temp_total_chunk_on_cuda(chunk: Chunk): if chunk.is_gathered: return chunk.cuda_global_chunk if chunk.cuda_shard is not None: shard_temp = chunk.cuda_shard else: shard_temp = chunk.cpu_shard.to(get_current_device()) total_temp = torch.zeros(chunk.chunk_size, dtype=chunk.dtype, device=get_current_device()) gather_list = list(torch.chunk(input=total_temp, chunks=chunk.pg_size, dim=0)) dist.all_gather(tensor_list=gather_list, tensor=shard_temp, group=chunk.torch_pg) return total_temp # TODO() not work for module where two params share the same tensor. def _add_param(model, name, param): name_list = name.split('.') module = model._modules[name_list[0]] for i in range(1, len(name_list) - 1): module = module._modules[name_list[i]] module._parameters[name_list[-1]] = param def convert_to_torch_module(gemini_ddp_model: 'GeminiDDP') -> torch.nn.Module: """convert_to_torch_module Args: gemini_ddp_model (GeminiDDP): a gemini ddp model Returns: torch.nn.Module: a torch model contains the params of gemini_ddp_model """ from colossalai.nn.parallel import GeminiDDP assert isinstance(gemini_ddp_model, GeminiDDP) module = gemini_ddp_model.module # replace ColoTensor to torch.nn.Tensor in module for n, p in gemini_ddp_model.torch_named_parameters(): _add_param(module, n, p) return module