import pytest import torch import torch.distributed as dist import torch.nn as nn import colossalai from colossalai.tensor import ProcessGroup from colossalai.testing import spawn from colossalai.utils import get_current_device from colossalai.zero import ColoInitContext, LowLevelZeroOptimizer class MlpModel(nn.Module): def __init__(self): super(MlpModel, self).__init__() self.linear1 = nn.Linear(128, 256) self.linear2 = nn.Linear(256, 512) def forward(self, x): x = self.linear1(x) x = self.linear2(x) return x def exam_zero_init(): dp_2_tp_2_pg = ProcessGroup(dp_degree=2, tp_degree=2) model1 = MlpModel().cuda() with ColoInitContext(device=get_current_device(), default_pg=dp_2_tp_2_pg): model2 = MlpModel() optimizer1 = LowLevelZeroOptimizer(torch.optim.Adam(model1.parameters(), lr=1)) optimizer2 = LowLevelZeroOptimizer(torch.optim.Adam(model2.parameters(), lr=1)) assert optimizer1._local_rank == optimizer2._local_rank assert optimizer1._world_size == optimizer2._world_size assert optimizer1._dp_global_ranks == optimizer2._dp_global_ranks mp_group1 = optimizer1._mp_torch_group mp_group2 = optimizer2._mp_torch_group assert dist.get_world_size(mp_group1) == dist.get_world_size(mp_group2) assert dist.get_rank(mp_group1) == dist.get_rank(mp_group2) def run_dist(rank, world_size, port): config_dict = dict(parallel=dict(data=2, tensor=dict(size=2, mode='1d'))) colossalai.launch(config=config_dict, rank=rank, world_size=world_size, port=port, host='localhost') exam_zero_init() @pytest.mark.dist def test_zero_init(): spawn(run_dist, 4) if __name__ == '__main__': test_zero_init()