import torch import torch.nn as nn import torch.nn.functional as F from ..registry import model_zoo from .base import CheckpointModule class HangingParamModule(CheckpointModule): """ Hanging Parameter: a parameter dose not belong to a leaf Module. It has subordinate nn.modules and a nn.Parameter. """ def __init__(self, checkpoint=False) -> None: super().__init__(checkpoint=checkpoint) self.proj1 = nn.Linear(4, 8) self.weight = nn.Parameter(torch.randn(8, 8)) self.proj2 = nn.Linear(8, 4) def forward(self, x): x = self.proj1(x) x = F.linear(x, self.weight) x = self.proj2(x) return x def data_gen(): return dict(x=torch.rand(16, 4)) def loss_fn(x): outputs = x["x"] label = torch.randint(low=0, high=2, size=(16,), device=outputs.device) return F.cross_entropy(x["x"], label) def output_transform(x: torch.Tensor): return dict(x=x) model_zoo.register( name="custom_hanging_param_model", model_fn=HangingParamModule, data_gen_fn=data_gen, output_transform_fn=output_transform, loss_fn=loss_fn, )