from torch.optim.lr_scheduler import _LRScheduler class LinearWarmupLR(_LRScheduler): """Linearly warmup learning rate and then linearly decay. Args: optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer. total_steps (int): Number of total training steps. warmup_steps (int, optional): Number of warmup steps, defaults to 0 last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1, the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr. """ def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, last_epoch: int = -1, **kwargs): self.warmup_steps = warmup_steps self.total_steps = total_steps super().__init__(optimizer, last_epoch=last_epoch) def get_lr(self): if self.last_epoch < self.warmup_steps: return [(self.last_epoch + 1) / (self.warmup_steps + 1) * lr for lr in self.base_lrs] else: return [ (self.total_steps - self.last_epoch) / (self.total_steps - self.warmup_steps) * lr for lr in self.base_lrs ]