""" Utils for model inference """ import os import torch from colossalai.kernel.triton.copy_kv_cache_dest import copy_kv_cache_to_dest def copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager): """ This function copies the key and value cache to the memory cache Args: layer_id : id of current layer key_buffer : key cache value_buffer : value cache context_mem_index : index of memory cache in kv cache manager mem_manager : cache manager """ copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id]) copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id]) def init_to_get_rotary(self, base=10000, use_elem=False): """ This function initializes the rotary positional embedding, it is compatible for all models and is called in ShardFormer Args: self : Model that holds the rotary positional embedding base : calculation arg use_elem : activated when using chatglm-based models """ self.config.head_dim_ = self.config.hidden_size // self.config.num_attention_heads if not hasattr(self.config, "rope_scaling"): rope_scaling_factor = 1.0 else: rope_scaling_factor = self.config.rope_scaling.factor if self.config.rope_scaling is not None else 1.0 if hasattr(self.config, "max_sequence_length"): max_seq_len = self.config.max_sequence_length elif hasattr(self.config, "max_position_embeddings"): max_seq_len = self.config.max_position_embeddings * rope_scaling_factor else: max_seq_len = 2048 * rope_scaling_factor base = float(base) # NTK ref: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ ntk_alpha = os.environ.get("INFER_NTK_ALPHA", None) if ntk_alpha is not None: ntk_alpha = float(ntk_alpha) assert ntk_alpha >= 1, "NTK alpha must be greater than or equal to 1" if ntk_alpha > 1: print(f"Note: NTK enabled, alpha set to {ntk_alpha}") max_seq_len *= ntk_alpha base = base * (ntk_alpha ** (self.head_dim_ / (self.head_dim_ - 2))) # Base change formula n_elem = self.config.head_dim_ if use_elem: n_elem //= 2 inv_freq = 1.0 / (base ** (torch.arange(0, n_elem, 2, device="cpu", dtype=torch.float32) / n_elem)) t = torch.arange(max_seq_len + 1024 * 64, device="cpu", dtype=torch.float32) / rope_scaling_factor freqs = torch.outer(t, inv_freq) self._cos_cached = torch.cos(freqs).to(torch.float16).cuda() self._sin_cached = torch.sin(freqs).to(torch.float16).cuda()