import torch import torch.distributed as dist import torch.nn as nn from torch.testing import assert_close from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce from colossalai.legacy.registry import GRADIENT_HANDLER from colossalai.moe import SparseMLP from colossalai.moe.manager import MOE_MANAGER from colossalai.moe.utils import get_moe_epsize_param_dict from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size def delete_moe_info(model): for _, param in model.named_parameters(): if hasattr(param, "moe_info"): delattr(param, "moe_info") class MoeModel(nn.Module): def __init__(self, enable_load_balance: bool = False): class TestSubModule(nn.Module): def __init__(self): super().__init__() self.moe = SparseMLP( num_experts=8, hidden_size=16, intermediate_size=32, enable_load_balance=enable_load_balance ) self.proj = nn.Linear(16, 4) def forward(self, x): x = self.moe(x) x = self.proj(x) return x super().__init__() self.test_embed = nn.Linear(4, 16) self.test_transform = TestSubModule() def forward(self, x): MOE_MANAGER.reset_loss() x = self.test_embed(x) x = self.test_transform(x) return x @GRADIENT_HANDLER.register_module class MoeGradientHandler(BaseGradientHandler): """A helper class to handle all-reduce operations in a data parallel group and moe model parallel. A all-reduce collective communication will be operated in :func:`handle_gradient` among a data parallel group. For better performance, it bucketizes the gradients of all parameters that are the same type to improve the efficiency of communication. Args: model (Module): Model where the gradients accumulate. optimizer (Optimizer): Optimizer for updating the parameters. """ def __init__(self, model, optimizer=None): super().__init__(model, optimizer) def handle_gradient(self): """A method running an all-reduce operation in a data parallel group. Then running an all-reduce operation for all parameters in experts across moe model parallel group """ if dist.get_world_size() > 1: epsize_param_dict = get_moe_epsize_param_dict(self._model) # epsize is 1, indicating the params are replicated among processes in data parallelism # use the ParallelMode.DATA to get data parallel group # reduce gradients for all parameters in data parallelism if 1 in epsize_param_dict: bucket_allreduce(param_list=epsize_param_dict[1]) for ep_size in epsize_param_dict: if ep_size != 1 and ep_size != MOE_MANAGER.world_size: bucket_allreduce( param_list=epsize_param_dict[ep_size], group=MOE_MANAGER.parallel_info_dict[ep_size].dp_group ) def assert_not_equal_in_group(tensor, process_group=None): # all gather tensors from different ranks world_size = dist.get_world_size(process_group) tensor_list = [torch.empty_like(tensor) for _ in range(world_size)] dist.all_gather(tensor_list, tensor, group=process_group) # check if they are equal one by one for i in range(world_size - 1): a = tensor_list[i] b = tensor_list[i + 1] assert not torch.allclose(a, b), ( f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}" ) def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False): model.train() with torch.cuda.amp.autocast(enabled=enable_autocast): if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, LowLevelZeroModel): optimizer.backward(loss) else: loss.backward() return y def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None: """Sync the parameters of tp model from ep model Args: local_model (MoeModule) ep_model (MoeModule) """ for (local_name, local_param), (ep_name, ep_param) in zip( local_model.named_parameters(), ep_model.named_parameters() ): assert local_name in ep_name, print(f"{local_name} != {ep_name}") if "experts" not in local_name: if assert_grad_flag: assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}" assert torch.allclose(local_param.grad, ep_param.grad) else: local_param.data.copy_(ep_param.data) continue # gather param from ep model param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))] dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param)) all_param = torch.cat(param_list, dim=0) if assert_grad_flag: grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))] dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param)) all_grad = torch.cat(grad_list, dim=0) if assert_grad_flag: assert torch.allclose(local_param, all_param) assert torch.allclose(local_param.grad, all_grad) else: local_param.data.copy_(all_param.data) def loose_close(a, b, dtype: torch.dtype = torch.float32): rtol = None atol = None if dtype is torch.float16: rtol = 5e-2 atol = 5e-4 elif dtype is torch.bfloat16: rtol = 4e-3 atol = 4e-3 a = a.detach().to(dtype) b = b.detach().to(dtype).to(a.device) assert_close(a, b, rtol=rtol, atol=atol)