# Applying Flash-Decoding as descibed in # https://pytorch.org/blog/flash-decoding/ # by Tri Dao, 2023 import torch import triton import triton.language as tl # Triton 2.1.0 @triton.jit def _flash_decoding_fwd_kernel( Q, # [batch_size, head_num, q_len(1), head_dim] KCache, # [num_blocks, num_kv_heads, block_size, head_dim] VCache, # [num_blocks, num_kv_heads, block_size, head_dim] block_tables, # [batch_size, max_blocks_per_sequence] mid_o, # [batch_size, head_num, kv_split_num, head_dim] mid_o_lse, # [batch_size, head_num, kv_split_num] kv_seq_len, # [batch_size] batch_size, stride_qt, stride_qh, stride_qd, stride_cacheb, stride_cacheh, stride_cachebs, stride_cached, stride_bts, stride_btb, stride_mid_ot, stride_mid_oh, stride_mid_ob, stride_mid_od, stride_mid_o_lset, stride_mid_o_lseh, stride_mid_o_lseb, sm_scale, KV_GROUPS: tl.constexpr, BLOCK_KV: tl.constexpr, BLOCK_SIZE: tl.constexpr, HEAD_DIM: tl.constexpr, ): cur_seq_idx = tl.program_id(0) if cur_seq_idx >= batch_size: return cur_head_idx = tl.program_id(1) block_start_kv = tl.program_id(2) # for splitting k/v cur_kv_head_idx = cur_head_idx // KV_GROUPS offsets_dmodel = tl.arange(0, HEAD_DIM) # NOTE It requires BLOCK_KV and BLOCK_SIZE to be the same # TODO might want to replace with BLOCK_KV % BLOCK_SIZE == 0 (optimize BLOCK_KV as multiple of BLOCK_SIZE) # and then support calculating multiple kv cache blocks on an instance tl.static_assert(BLOCK_KV == BLOCK_SIZE) # get the current (kv) sequence length from provided context lengths tensor cur_kv_seq_len = tl.load(kv_seq_len + cur_seq_idx) offsets_q = cur_seq_idx * stride_qt + cur_head_idx * stride_qh + offsets_dmodel * stride_qd q = tl.load(Q + offsets_q) # block table for the current sequence block_table_ptr = block_tables + cur_seq_idx * stride_bts # actually current block table current block start idx # cur_bt_start_idx = block_start_kv * (BLOCK_KV // BLOCK_SIZE) cur_bt_start_idx = block_start_kv cur_block_id = tl.load(block_table_ptr + cur_bt_start_idx * stride_btb) if block_start_kv * BLOCK_KV >= cur_kv_seq_len: return cur_occupied_size = tl.where( (block_start_kv + 1) * BLOCK_SIZE <= cur_kv_seq_len, BLOCK_SIZE, cur_kv_seq_len - block_start_kv * BLOCK_SIZE ) tl.device_assert(cur_occupied_size >= 0) offset_kvcache = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh K_block_ptr = tl.make_block_ptr( base=KCache + offset_kvcache, shape=(cur_occupied_size, HEAD_DIM), strides=(stride_cachebs, stride_cached), offsets=(0, 0), block_shape=(BLOCK_SIZE, HEAD_DIM), order=(0, 1), ) V_block_ptr = tl.make_block_ptr( base=VCache + offset_kvcache, shape=(cur_occupied_size, HEAD_DIM), strides=(stride_cachebs, stride_cached), offsets=(0, 0), block_shape=(BLOCK_SIZE, HEAD_DIM), order=(0, 1), ) k_cur_block = tl.load(K_block_ptr) v_cur_block = tl.load(V_block_ptr) acc = tl.zeros([HEAD_DIM], dtype=tl.float32) # use block size of the paged/blocked kv cache S_ij = tl.zeros([BLOCK_SIZE], dtype=tl.float32) # NOTE a trick to come across triton's requirement that values in both first and second input shapes must be >= 16, # Multiplying two tensors with shapes [1, d] * [d, block_size] will fail. # Refer to https://github.com/openai/triton/discussions/895 S_ij += tl.sum(q[None, :] * k_cur_block, 1) S_ij *= sm_scale S_ij += tl.where(block_start_kv * BLOCK_KV + tl.arange(0, BLOCK_SIZE) < cur_kv_seq_len, 0, float("-inf")) m = tl.max(S_ij, 0) S_ij -= m p_ij_hat = tl.exp(S_ij) l = tl.sum(p_ij_hat, 0) p_ij_hat = p_ij_hat.to(v_cur_block.type.element_ty) acc += tl.sum(v_cur_block * p_ij_hat[:, None], 0) acc = acc / l offsets_mid_o = ( cur_seq_idx * stride_mid_ot + cur_head_idx * stride_mid_oh + block_start_kv * stride_mid_ob + offsets_dmodel * stride_mid_od ) tl.store(mid_o + offsets_mid_o, acc) offsets_mid_o_lse = ( cur_seq_idx * stride_mid_o_lset + cur_head_idx * stride_mid_o_lseh + block_start_kv * stride_mid_o_lseb ) # logsumexp L^(j) = m^(j) + log(l^(j)) tl.store(mid_o_lse + offsets_mid_o_lse, m + tl.log(l)) # Triton 2.1.0 @triton.jit def _flash_decoding_fwd_reduce_kernel( mid_o, # [batch_size, head_num, kv_split_num, head_dim] mid_o_lse, # [batch_size, head_num, kv_split_num] O, # [batch_size, num_heads, head_dim] or [batch_size, 1, num_heads, head_dim] kv_seq_len, batch_size, stride_mid_ot, stride_mid_oh, stride_mid_ob, stride_mid_od, stride_o_lset, stride_o_lseh, stride_o_lseb, stride_ot, stride_oh, stride_od, BLOCK_KV: tl.constexpr, HEAD_DIM: tl.constexpr, ): cur_seq_idx = tl.program_id(0) if cur_seq_idx >= batch_size: return cur_head_idx = tl.program_id(1) cur_kv_seq_len = tl.load(kv_seq_len + cur_seq_idx) offsets_dmodel = tl.arange(0, HEAD_DIM) # NOTE currently the block size BLOCK_KV splitting kv is relatively small as we have # BLOCK_KV == BLOCK_SIZE for now. We might want to decrease the number of blocks of kv splitted. kv_split_num = (cur_kv_seq_len + BLOCK_KV - 1) // BLOCK_KV m_i = float("-inf") # max logic l = 0.0 # sum exp acc = tl.zeros([HEAD_DIM], dtype=tl.float32) offsets_mid_o = cur_seq_idx * stride_mid_ot + cur_head_idx * stride_mid_oh + offsets_dmodel offset_mid_lse = cur_seq_idx * stride_o_lset + cur_head_idx * stride_o_lseh for block_i in range(0, kv_split_num, 1): mid_o_block = tl.load(mid_o + offsets_mid_o + block_i * stride_mid_ob) lse = tl.load(mid_o_lse + offset_mid_lse + block_i * stride_o_lseb) m_ij = tl.maximum(m_i, lse) scale = tl.exp(m_i - m_ij) acc = acc * scale lse -= m_ij exp_logic = tl.exp(lse) acc += exp_logic * mid_o_block l = scale * l + exp_logic m_i = m_ij acc = acc / l offsets_O = cur_seq_idx * stride_ot + cur_head_idx * stride_oh + offsets_dmodel tl.store(O + offsets_O, acc.to(O.type.element_ty)) return # Decoding Stage # Used with blocked KV Cache (PagedAttention) def flash_decoding_attention( q: torch.Tensor, k_cache: torch.Tensor, v_cache: torch.Tensor, kv_seq_len: torch.Tensor, block_tables: torch.Tensor, block_size: int, max_seq_len_in_batch: int = None, output: torch.Tensor = None, mid_output: torch.Tensor = None, mid_output_lse: torch.Tensor = None, sm_scale: int = None, kv_group_num: int = 1, ): """ Flash decoding implemented with a blocked KV Cache (PagedAttention) during decoding stage. Args: q (torch.Tensor): [bsz, num_heads, head_dim] k_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] v_cache (torch.Tensor): [num_blocks, num_kv_heads, block_size, head_dim] kv_seq_len (torch.Tensor): [batch_size] records the (kv) sequence lengths incorporating past kv sequence lengths. block_tables (torch.Tensor): [batch_size, max_blocks_per_sequence] max_seq_len_in_batch (int): Maximum sequence length in the batch. output (torch.Tensor): [bsz, num_heads, head_dim] mid_output (torch.Tensor): [ max_bsz , num_heads, kv_max_split_num, head_dim] Intermediate output tensor. `max_bsz` should be greater than or equal to `bsz`. mid_output_lse (torch.Tensor): [ max_bsz , num_heads, kv_max_split_num] Log-sum-exp of intermediate output. `max_bsz` should be greater than or equal to `bsz`. block_size (int): Size of each block in the blocked key/value cache. num_kv_group (int, optional): Number of key/value groups. Defaults to 1. Returns: Output tensor with shape [bsz, num_heads, head_dim] """ q = q.squeeze() if q.dim() == 4 else q assert q.dim() == 3, f"Incompatible q dim: {q.dim()}" bsz, num_heads, head_dim = q.shape assert head_dim in {32, 64, 128, 256} assert kv_seq_len.shape[0] == block_tables.shape[0] == bsz, ( f"Got incompatible batch size (number of seqs):\n" f" KV seq lengths bsz {kv_seq_len.size(0)}, Block tables bsz {block_tables.size(0)}, " f"batch size {bsz}" ) assert k_cache.size(-2) == v_cache.size(-2) == block_size, ( f"Got incompatible block size on kv caches:\n" f" assigned block_size {block_size}, k_cache block_size {k_cache.size(-2)}, " f"v_cache block_size {v_cache.size(-2)}" ) # NOTE BLOCK_KV could be considered as block splitting the sequence on k/v # For now, BLOCK_KV is supposed to be equivalent with the size of physical cache block (i.e.`block_size`) assert block_size in {16, 32, 64, 128} BLOCK_KV = block_size sm_scale = 1.0 / (head_dim**0.5) if sm_scale is None else sm_scale max_seq_len_in_batch = kv_seq_len.max().item() if max_seq_len_in_batch is None else max_seq_len_in_batch # For compatibility (TODO revise modeling in future) kv_max_split_num = (max_seq_len_in_batch + BLOCK_KV - 1) // BLOCK_KV mid_output = ( torch.zeros(size=(bsz, num_heads, kv_max_split_num, head_dim), dtype=torch.float32, device=q.device) if mid_output is None else mid_output ) mid_output_lse = ( torch.zeros(size=(bsz, num_heads, kv_max_split_num), dtype=torch.float32, device=q.device) if mid_output_lse is None else mid_output_lse ) # NOTE use `triton.next_power_of_2` here to utilize the cache mechanism of triton # To optimize, revise batching/scheduling to batch 2^n sequences in a batch (preferred) grid = (triton.next_power_of_2(bsz), num_heads, triton.cdiv(triton.next_power_of_2(max_seq_len_in_batch), BLOCK_KV)) output = torch.empty((bsz, num_heads, head_dim), dtype=q.dtype, device=q.device) if output is None else output _flash_decoding_fwd_kernel[grid]( q, k_cache, v_cache, block_tables, mid_output, mid_output_lse, kv_seq_len, bsz, q.stride(0), q.stride(1), q.stride(2), k_cache.stride(0), k_cache.stride(1), k_cache.stride(2), k_cache.stride(3), block_tables.stride(0), block_tables.stride(1), mid_output.stride(0), mid_output.stride(1), mid_output.stride(2), mid_output.stride(3), mid_output_lse.stride(0), mid_output_lse.stride(1), mid_output_lse.stride(2), sm_scale, KV_GROUPS=kv_group_num, BLOCK_KV=block_size, BLOCK_SIZE=block_size, HEAD_DIM=head_dim, ) grid = (triton.next_power_of_2(bsz), num_heads) _flash_decoding_fwd_reduce_kernel[grid]( mid_output, mid_output_lse, output, kv_seq_len, bsz, mid_output.stride(0), mid_output.stride(1), mid_output.stride(2), mid_output.stride(3), mid_output_lse.stride(0), mid_output_lse.stride(1), mid_output_lse.stride(2), output.stride(0), output.stride(1), output.stride(2), BLOCK_KV=block_size, HEAD_DIM=head_dim, ) return output