from functools import partial import pytest import torch import torch.multiprocessing as mp import colossalai from colossalai.context import MOE_CONTEXT from colossalai.engine.gradient_handler import MoeGradientHandler from colossalai.nn import MoeLoss from colossalai.testing import assert_equal_in_group, parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.legacy.init_ctx import ZeroInitContext from colossalai.zero.legacy.shard_utils import BucketTensorShardStrategy, TensorShardStrategy from colossalai.zero.legacy.sharded_model import ShardedModelV2 from colossalai.zero.legacy.sharded_model._utils import cast_tensor_to_fp16 from colossalai.zero.legacy.sharded_model.utils import col_model_deepcopy from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_moe.test_moe_zero_init import MoeModel from tests.test_zero.common import CONFIG, check_grads_padding, run_fwd_bwd @parameterize("enable_autocast", [False]) @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def run_model_test(enable_autocast, shard_strategy_class): shard_strategy = shard_strategy_class() get_components_func = non_distributed_component_funcs.get_callable('hanging_param_model') _, train_dataloader, _, optimizer_class, _ = get_components_func() criterion = MoeLoss(aux_weight=0.01, loss_fn=torch.nn.CrossEntropyLoss) with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()), shard_strategy=shard_strategy, shard_param=True): zero_model = MoeModel(checkpoint=True) zero_model = ShardedModelV2(zero_model, shard_strategy) # check whether parameters are identical in ddp for name, p in zero_model.named_parameters(): if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated: assert_equal_in_group(p.colo_attr.data_payload) model = MoeModel(checkpoint=True).half() col_model_deepcopy(zero_model, model) model = model.cuda() grad_handler = MoeGradientHandler(model) for i, (data, label) in enumerate(train_dataloader): if i > 5: break data, label = cast_tensor_to_fp16(data).cuda(), label.cuda() run_fwd_bwd(model, data, label, criterion, enable_autocast) run_fwd_bwd(zero_model, data, label, criterion, enable_autocast) grad_handler.handle_gradient() check_grads_padding(model, zero_model, loose=True) def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') MOE_CONTEXT.setup(seed=42) run_model_test() @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @rerun_if_address_is_in_use() def test_moe_zero_model(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_moe_zero_model(world_size=2)