import json from pathlib import Path from typing import Any, List, Union from .utils import is_dtensor_checkpoint __all__ = ['CheckpointIndexFile'] class CheckpointIndexFile: """ This class is a data structure to keep the content in the index.json file for sharded checkpoint. Example: >>> index = CheckpointIndexFile.from_file('model.index.json') >>> index.append_metadata('model_type', 'bert') >>> index.append_weight_map('bert.embeddings.word_embeddings.weight', 'model_0001-of-0002.bin') >>> index.export('new_index.json') """ def __init__(self) -> None: self.root_path = None self.metadata: dict = dict() self.weight_map: dict = dict() @staticmethod def from_file(index_path: Union[str, Path]): """ Create a CheckpointIndexFile object from a json file. Args: index_path (str): path to the json file. Returns: CheckpointIndexFile: CheckpointIndexFile object. """ index = CheckpointIndexFile() index.load(index_path) return index def load(self, json_path: str): """ Load the index file from a json file. Args: json_path (str): path to the json file. """ # load the json file with open(json_path, 'r') as f: index = json.load(f) # assign attributes if exists if "metadata" in index: self.metadata = index["metadata"] if "weight_map" in index: self.weight_map = index["weight_map"] # assign the root directory for the index file self.root_path = Path(json_path).absolute().parent def export(self, json_path: str): """ Export the index file to a json file. Args: json_path (str): path to the json file. """ # create the index file index = dict() index["metadata"] = self.metadata index["weight_map"] = self.weight_map # export the index file with open(json_path, 'w') as f: json.dump(index, f, indent=4) def append_weight_map(self, param_name: str, shard_file: str): """ Append a weight map entry to the index file. Args: param_name (str): name of the parameter. shard_file (str): name of the shard file. """ self.weight_map[param_name] = shard_file def append_meta_data(self, name: str, val: Any): """ Append a metadata entry to the index file. Args: name (str): name of the metadata. val (Any): value of the metadata. """ self.metadata[name] = val def contains_dtensor(self): """ Check if the index file contains any distributed tensor. The distributed tensors will be stored in `dtensor/module.linear.weight.*.bin` or `dtensor/module.linear.weight.*.safetensors` in the weight map. Returns: bool: True if the index file contains any distributed tensor, False otherwise. """ for value in self.weight_map.values(): if value.endswith(".*.bin") or value.endswith(".*.safetensors"): return True return False def get_checkpoint_fileanames(self) -> List[str]: """ Get the set of checkpoint filenames in the weight map. Returns: list: checkpoint shard filenames. """ # read the checkpoint file list from the json file and get a list of unique file names checkpoint_files = sorted(list(set(self.weight_map.values()))) # get the absolute paths for all checkpoint files checkpoint_files = [str(self.root_path.joinpath(f)) for f in checkpoint_files] dtensor_list = [] checkpoint_list = [] for ckpt_file in checkpoint_files: if is_dtensor_checkpoint(ckpt_file): dtensor_list.append(ckpt_file) else: checkpoint_list.append(ckpt_file) return checkpoint_list, dtensor_list def assert_no_dtensor_checkpoint(self): for val in self.weight_map.values(): if is_dtensor_checkpoint(val): raise ValueError(f"Checkpoint file {val} contains distributed tensor") def get_checkpoint_file(self, param_name: str) -> str: """ Get the checkpoint file name for a parameter. Args: param_name (str): name of the parameter. Returns: str: checkpoint file name. """ ckpt_path = self.weight_map[param_name] return ckpt_path def get_all_param_names(self): """ Get all the weight keys. """ return list(self.weight_map.keys())