from copy import copy from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.tensor import ColoTensor, distspec from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp import torch.nn.functional as F from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.core import global_context as gpc from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction, DistSpecManager, register_colo_module, init_colo_module, ColoLinear from _utils import tensor_equal, tensor_shard_equal, set_seed from tests.components_to_test.registry import non_distributed_component_funcs def run_simplenet_with_spec(label): get_components_func = non_distributed_component_funcs.get_callable('simple_net') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) set_seed(1) with ColoInitContext(device=get_current_device()): model = model_builder(checkpoint=True) if rank == 0: model_seq = model_builder(checkpoint=True) model_seq = model_seq.cuda() # Make two models have the same init params for p1, p2 in zip(model.parameters(), model_seq.parameters()): p2.data.copy_(p1.data) parallel_action = ParallelAction(ComputePattern.TP1D) init_colo_module(model, parallel_action, recursive=True, label=label) model = model.cuda() for i, (data, label) in enumerate(train_dataloader): data = data.to(get_current_device()) label = label.to(get_current_device()) torch.distributed.broadcast(data, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D)) torch.distributed.broadcast(label, 0, group=gpc.get_group(ParallelMode.PARALLEL_1D)) if criterion: output = model(data) loss = criterion(output, label) else: output = model(data, label) loss = output # For reference if rank == 0: if criterion: output_seq = model_seq(data) loss_seq = criterion(output_seq, label) else: output_seq = model_seq(data, label) loss_seq = output_seq if rank == 0: with torch.no_grad(): assert torch.allclose(loss, loss_seq, rtol=1e-2) loss.backward() if rank == 0: loss_seq.backward() with torch.no_grad(): # check param for p1, p2 in zip(model.parameters(), model_seq.parameters()): if p1.size() == p2.size(): assert torch.allclose(p1, p2) else: if p1.size(-1) < p2.size(-1): # col world_size = p2.size(-1) // p1.size(-1) split_p2 = torch.chunk(p2, world_size, dim=-1)[0] elif p1.size(0) < p2.size(0): # row world_size = p2.size(0) // p1.size(0) split_p2 = torch.chunk(p2, world_size, dim=0)[0] assert torch.allclose(p1, split_p2) if i > 3: break def run_linear_with_spec(label): with ColoInitContext(device=get_current_device()): model = torch.nn.Linear(4, 8) model_handy = copy(model) parallel_action = ParallelAction(ComputePattern.TP1D) init_colo_module(model, parallel_action, recursive=True, label=label) x = torch.rand(2, 4).cuda() out = model(x) colo_out = model_handy(x) assert tensor_equal(out, colo_out) grad = torch.rand_like(out) out.backward(grad) colo_out.backward(grad) assert tensor_shard_equal(model.weight.grad, model_handy.weight.grad) assert tensor_shard_equal(model.bias.grad, model_handy.bias.grad) def run_dist(rank, world_size, port, func): config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') func('col') func('row') func('default') @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_module_linear_1d(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port(), func=run_linear_with_spec) mp.spawn(run_func, nprocs=world_size) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_module_simplenet(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port(), func=run_simplenet_with_spec) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_module_simplenet(4)