import os from functools import partial from tempfile import TemporaryDirectory import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp import torch.nn as nn from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.checkpoint_io.constant import GLOBAL_META_FILE_NAME from colossalai.utils.checkpoint_io.io import redist, save from colossalai.utils.checkpoint_io.meta import (ParamDistMeta, ParamRedistMeta, PipelineRedistMeta, RankRedistMeta, RedistMeta) from torch.optim import Adam class DummyModel(nn.Module): def __init__(self) -> None: super().__init__() self.fc = nn.Linear(20, 1) def prepare_model_optim(shard: bool = False, zero: bool = False): model = DummyModel() if shard: model.fc.weight.data = model.fc.weight.chunk(2, 1)[dist.get_rank() % 2] if zero: dp_rank = dist.get_rank() // 2 model.fc.weight.data = model.fc.weight.reshape(-1).split([3, model.fc.weight.size(1) - 3], 0)[dp_rank] if dp_rank != 0: model.fc.bias.data = torch.empty(0, dtype=model.fc.bias.dtype) for p in model.parameters(): p.grad = torch.ones_like(p) optimizer = Adam(model.parameters(), lr=1e-3) optimizer.step() return model, optimizer def get_dist_metas(nprocs: int, zero: bool = False): dp_world_size = nprocs // 2 dist_metas = [] for rank in range(nprocs): if zero: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2], zero_numel=10, zero_orig_shape=[1, 10]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1, zero_numel=1, zero_orig_shape=[1]) }) else: dist_metas.append({ 'fc.weight': ParamDistMeta(rank // 2, dp_world_size, rank % 2, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamDistMeta(rank // 2, dp_world_size, 0, 1) }) return dist_metas def get_redist_meta(nprocs: int): dp_world_size = nprocs // 2 rank_meta = { 'fc.weight': {rank: RankRedistMeta(rank // 2, rank % 2, 0) for rank in range(nprocs)}, 'fc.bias': {rank: RankRedistMeta(rank // 2, 0, 0) for rank in range(nprocs)} } param_meta = { 'fc.weight': ParamRedistMeta(dp_world_size, 2, tp_shard_dims=[1], tp_num_parts=[2]), 'fc.bias': ParamRedistMeta(dp_world_size, 1) } return RedistMeta(rank_meta, [], param_meta) def check_checkpoint_shape(dir_name: str): global_meta = torch.load(os.path.join(dir_name, GLOBAL_META_FILE_NAME)) for meta_name in global_meta['meta']: meta = torch.load(os.path.join(dir_name, meta_name)) assert meta['dist_meta'] is not None assert len(meta['params']) == 2 assert len(meta['model']) == 1 and len(meta['optimizer']) == 1 model_state_dict = torch.load(os.path.join(dir_name, meta['model'][0])) assert len(model_state_dict) == 2 assert model_state_dict['fc.weight'].size(1) == 10 optimizer_state_dict = torch.load(os.path.join(dir_name, meta['optimizer'][0])) assert len(optimizer_state_dict['state']) == 2 assert 'param_groups' in optimizer_state_dict and 'state' in optimizer_state_dict assert optimizer_state_dict['state'][0]['exp_avg'].size(1) == 10 assert optimizer_state_dict['state'][0]['exp_avg_sq'].size(1) == 10 def test_global_to_dist(): model, optimizer = prepare_model_optim() with TemporaryDirectory() as dir_name: save(dir_name, model, optimizer) with TemporaryDirectory() as output_dir: redist(dir_name, output_dir, get_redist_meta(4), get_dist_metas(4)) check_checkpoint_shape(output_dir) def run_dist(rank, world_size, port, func): colossalai.launch(config={'parallel': { 'tensor': { 'mode': '1d', 'size': 2 } }}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') func() def run_save_dist(dir_name: str, zero: bool): model, optmizer = prepare_model_optim(shard=True, zero=zero) rank = dist.get_rank() save(dir_name, model, optmizer, dist_meta=get_dist_metas(4, zero)[rank]) @pytest.mark.dist @pytest.mark.parametrize("zero", [False, True]) @rerun_if_address_is_in_use() def test_dist_to_dist(zero: bool): with TemporaryDirectory() as dir_name: fn = partial(run_save_dist, dir_name, zero) world_size = 4 proc_fn = partial(run_dist, world_size=world_size, port=free_port(), func=fn) mp.spawn(proc_fn, nprocs=world_size) with TemporaryDirectory() as output_dir: redist(dir_name, output_dir, get_redist_meta(4), get_dist_metas(4)) if not zero: assert len(os.listdir(output_dir)) == 0 else: check_checkpoint_shape(output_dir) if __name__ == '__main__': test_global_to_dist() test_dist_to_dist(False) test_dist_to_dist(True)