import os import random from functools import partial import numpy as np import pytest import torch import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP from vit import get_training_components import colossalai from colossalai.context import ParallelMode from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.nn.parallel.data_parallel import ColoDDP from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext def set_seed(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def tensor_equal(A, B): return torch.allclose(A, B, rtol=1e-3, atol=1e-1) def tensor_shard_equal(tensor: torch.Tensor, shard: torch.Tensor): assert tensor.ndim == shard.ndim if tensor.shape == shard.shape: return tensor_equal(tensor, shard) else: dims_not_eq = torch.nonzero(torch.tensor(tensor.shape) != torch.tensor(shard.shape)) if dims_not_eq.numel() == 1: # 1D shard dim = dims_not_eq.item() world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D) rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) return tensor_equal(tensor.chunk(world_size, dim)[rank], shard) else: raise # Only for all Linear, it's 1d_row split because Linear will be transposed when calculating. # But for other layers, it's 1d_col split. # Layernorm is not supported for now. # patch_embeddings.projection has nn.Conv2d # https://github.com/huggingface/transformers/blob/dcb08b99f44919425f8ba9be9ddcc041af8ec25e/src/transformers/models/vit/modeling_vit.py#L182 def init_1d_row_for_linear_weight_spec(model, world_size: int): pg = ProcessGroup(tp_degree=world_size) spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) with DistSpecManager.no_grad(): for n, p in model.named_parameters(): if 'weight' in n and 'layernorm' not in n and 'embeddings.patch_embeddings.projection.weight' not in n: p.set_process_group(pg) p.set_tensor_spec(*spec) # Similarly, it's col split for Linear but row split for others. def init_1d_col_for_linear_weight_bias_spec(model, world_size: int): pg = ProcessGroup(tp_degree=world_size) spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) with DistSpecManager.no_grad(): for n, p in model.named_parameters(): if ('weight' in n or 'bias' in n) and 'layernorm' not in n and 'embeddings.patch_embeddings.projection' not in n: p.set_process_group(pg) p.set_tensor_spec(*spec) def check_param_equal(model, torch_model): for p, torch_p in zip(model.parameters(), torch_model.parameters()): assert tensor_shard_equal(torch_p, p) def check_grad_equal(model, torch_model): for p, torch_p in zip(model.parameters(), torch_model.parameters()): if (torch_p.grad.shape == p.grad.shape): assert torch.allclose(torch_p.grad, p.grad, rtol=1e-3, atol=2.0) == True else: dims_not_eq = torch.nonzero(torch.tensor(torch_p.grad.shape) != torch.tensor(p.grad.shape)) dim = dims_not_eq.item() world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D) rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D) assert torch.allclose(torch_p.grad.chunk(world_size, dim)[rank], p.grad, rtol=1e-3, atol=2.0) == True def run_vit(init_spec_func, use_ddp): model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_training_components() with ColoInitContext(device=get_current_device()): model = model_builder() model = model.cuda() torch_model = model_builder().cuda() if use_ddp: model = ColoDDP(model) torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA)) for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p) world_size = torch.distributed.get_world_size() init_spec_func(model, world_size) check_param_equal(model, torch_model) model.train() torch_model.train() set_seed(gpc.get_local_rank(ParallelMode.DATA)) optimizer = optimizer_class(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) torch_optimizer = optimizer_class(torch_model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0) for i, image_dict in enumerate(train_dataloader): if use_ddp: model.zero_grad() else: optimizer.zero_grad() logits = model(image_dict['pixel_values']) torch_logits = torch_model(image_dict['pixel_values']) assert tensor_equal(torch_logits.logits, logits.logits) loss = criterion(logits.logits, image_dict['label']) torch_loss = criterion(torch_logits.logits, image_dict['label']) if use_ddp: model.backward(loss) else: loss.backward() torch_loss.backward() check_grad_equal(model, torch_model) optimizer.step() torch_optimizer.step() check_param_equal(model, torch_model) break def run_dist(rank, world_size, port, use_ddp): if use_ddp and world_size == 1: return tp_world_size = world_size // 2 if use_ddp else world_size config = dict(parallel=dict(tensor=dict(mode="1d", size=tp_world_size),)) colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_vit(init_1d_row_for_linear_weight_spec, use_ddp) run_vit(init_1d_col_for_linear_weight_bias_spec, use_ddp) @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @pytest.mark.parametrize('use_ddp', [False, True]) @rerun_if_address_is_in_use() def test_vit(world_size, use_ddp): run_func = partial(run_dist, world_size=world_size, port=free_port(), use_ddp=use_ddp) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_vit(1, False)