from functools import partial from time import time import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration from colossalai.gemini.gemini_mgr import GeminiManager from colossalai.nn.optimizer import HybridAdam from colossalai.nn.parallel import ZeroDDP from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.utils.cuda import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from colossalai.zero import ZeroOptimizer from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import debug_print, set_seed, tensor_equal, tensor_shard_equal def check_param(model: ZeroDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() for key, value in torch_dict.items(): # key is 'module.model.PARAMETER', so we truncate it key = key[7:] if key == 'model.lm_head.weight': continue assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) assert torch.allclose(value, temp_zero_value, rtol=1e-3, atol=1e-2), "parameter '{}' has problem.".format(key) def run_fwd_bwd(model, criterion, optimizer, input_ids, attn_mask): optimizer.zero_grad() logits = model(input_ids, attn_mask) logits = logits.float() loss = criterion(logits, input_ids) optimizer.backward(loss) return logits @parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) def exam_gpt_fwd_bwd(placement_policy): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() torch_model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) world_size = torch.distributed.get_world_size() config_dict, _ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False if placement_policy != 'cuda': init_device = torch.device('cpu') else: init_device = None chunk_manager = ChunkManager(config_dict, init_device=init_device) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=2) amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) for i, (input_ids, attn_mask) in enumerate(train_dataloader): if i > 2: break zero_logits = run_fwd_bwd(model, criterion, zero_optim, input_ids, attn_mask) torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask) assert torch.allclose(zero_logits, torch_logits, rtol=1e-3, atol=1e-2) # debug_print([0], zero_logits, torch_logits) zero_optim.step() torch_optim.step() check_param(model, torch_model) @parameterize('placement_policy', ['cuda', 'cpu']) def exam_tiny_example(placement_policy): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() torch_model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p.data) chunk_manager = init_chunk_manager(model=model, init_device=get_current_device(), search_range_mb=1) gemini_manager = GeminiManager(placement_policy, chunk_manager) model = ZeroDDP(model, gemini_manager, pin_memory=True) optimizer = HybridAdam(model.parameters(), lr=1e-3) zero_optim = ZeroOptimizer(optimizer, model, initial_scale=2) amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) model.eval() torch_model.eval() set_seed(dist.get_rank() * 3 + 128) for i, (input_ids, attn_mask) in enumerate(train_dataloader): if i > 2: break zero_logits = run_fwd_bwd(model, criterion, zero_optim, input_ids, attn_mask) torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids, attn_mask) assert torch.allclose(zero_logits, torch_logits, rtol=1e-3, atol=1e-2) # debug_print([0], zero_logits, torch_logits) zero_optim.step() torch_optim.step() check_param(model, torch_model) def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_gpt_fwd_bwd() exam_tiny_example() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_gpt(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_gpt(2)