from functools import partial import colossalai import pytest import torch import torch.multiprocessing as mp from colossalai.amp import convert_to_apex_amp from colossalai.nn.optimizer import CPUAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy) from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_model.utils import col_model_deepcopy from colossalai.zero.sharded_optim import ShardedOptimizerV2 from colossalai.zero.sharded_optim._utils import has_inf_or_nan from colossalai.utils import get_current_device from tests.components_to_test.registry import non_distributed_component_funcs from colossalai.engine.gradient_handler import MoeGradientHandler from colossalai.context import MOE_CONTEXT from colossalai.testing import assert_equal_in_group from tests.test_zero.common import CONFIG, check_sharded_model_params from tests.test_moe.test_moe_zero_init import MoeModel def _run_step(model, optimizer, data, label, criterion, grad_handler): model.train() optimizer.zero_grad() if criterion: y = model(data) loss = criterion(y, label) else: loss = model(data, label) loss = loss.float() if isinstance(model, ShardedModelV2): optimizer.backward(loss) else: loss.backward() if grad_handler is not None: grad_handler.handle_gradient() optimizer.step() @parameterize("cpu_offload", [True]) @parameterize("use_cpuadam", [True]) # We do not use Hybrid Adam right now, since it has a little bug @parameterize("reuse_fp16_shard", [True, False]) @parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy]) def _run_test_sharded_optim_v2(cpu_offload, shard_strategy_class, use_cpuadam, reuse_fp16_shard, gpu_margin_mem_ratio=0.0): shard_strategy = shard_strategy_class() if use_cpuadam and cpu_offload is False: return MOE_CONTEXT.reset_loss() get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module') _, train_dataloader, _, optimizer_class, criterion = get_components_func() with ZeroInitContext(target_device=torch.device('cpu') if cpu_offload else get_current_device(), shard_strategy=shard_strategy, shard_param=True): zero_model = MoeModel(checkpoint=True) zero_model = ShardedModelV2(zero_model, shard_strategy, tensor_placement_policy='cpu' if cpu_offload else 'cuda', reuse_fp16_shard=reuse_fp16_shard) # check whether parameters are identical in ddp for name, p in zero_model.named_parameters(): if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated: assert_equal_in_group(p.colo_attr.data_payload.to(get_current_device())) model = MoeModel(checkpoint=True).half() col_model_deepcopy(zero_model, model) model = model.cuda().float() if use_cpuadam: optimizer_class = CPUAdam optim = optimizer_class(model.parameters(), lr=1e-3) sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3) sharded_optim = ShardedOptimizerV2(zero_model, sharded_optim, initial_scale=2**5, gpu_margin_mem_ratio=gpu_margin_mem_ratio) amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False) apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config) apex_grad_handler = MoeGradientHandler(model) for i, (data, label) in enumerate(train_dataloader): if i > 5: break data, label = data.cuda(), label.cuda() _run_step(apex_model, apex_optimizer, data, label, criterion, apex_grad_handler) _run_step(zero_model, sharded_optim, data, label, criterion, None) check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam) for param in model.parameters(): assert not has_inf_or_nan(param) def _run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') MOE_CONTEXT.setup(seed=42) _run_test_sharded_optim_v2() # use_cpuadam = True can be used with cpu_offload = False @pytest.mark.dist @pytest.mark.parametrize("world_size", [2]) @rerun_if_address_is_in_use() def test_moe_zero_optim(world_size): run_func = partial(_run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_moe_zero_optim(world_size=4)