from typing import Any, Dict, List, Optional, Union import torch def unbind_batch(batch: Dict[str, torch.Tensor]) -> List[Dict[str, torch.Tensor]]: batches = [] for k, v in batch.items(): if len(batches) == 0: unbinded_tensors = v.unbind(0) batches = [{k: tensor} for tensor in unbinded_tensors] else: unbinded_tensors = v.unbind(0) assert len(batches) == len(unbinded_tensors) for i, tensor in enumerate(unbinded_tensors): batches[i][k] = tensor return batches def bind_batch(batches: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]: batch = {} for k in batches[0].keys(): batch[k] = torch.stack([batch[k] for batch in batches], dim=0) return batch def pre_send(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # compress mask to save bandwidth if "attention_mask" in batch: batch["attention_mask"] = batch["attention_mask"].to(torch.bool) if "action_mask" in batch: batch["action_mask"] = batch["action_mask"].to(torch.bool) return batch def post_recv(batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: # decompress mask if "attention_mask" in batch: batch["attention_mask"] = batch["attention_mask"].to(torch.int) if "action_mask" in batch: batch["action_mask"] = batch["action_mask"].to(torch.int) return batch def update_by_default(data: Dict[str, Any], default: Dict[str, Any]) -> Dict[str, Any]: data = data.copy() for k, v in default.items(): if k not in data: data[k] = v return data def log_probs_from_logits(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: """ Compute the log probabilities from logits for the given labels. Args: logits (torch.Tensor): The input logits. labels (torch.Tensor): The target labels. Returns: torch.Tensor: The log probabilities corresponding to the labels. """ log_probs = torch.log_softmax(logits, dim=-1) per_label_logps = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)) return per_label_logps.squeeze(-1) def calc_action_log_probs(logits: torch.Tensor, sequences: torch.LongTensor, num_actions: int) -> torch.Tensor: """Calculate action log probs. Args: output (torch.Tensor): Output tensor of Actor.forward.logits. sequences (torch.LongTensor): Input sequences. num_actions (int): Number of actions. Returns: torch.Tensor: Action log probs. """ log_probs = log_probs_from_logits(logits[:, :-1, :], sequences[:, 1:]) return log_probs[:, -num_actions:] def masked_mean(tensor: torch.Tensor, mask: torch.Tensor, dim: int = 1) -> torch.Tensor: """ Compute the masked mean of a tensor along a specified dimension. Args: tensor (torch.Tensor): The input tensor. mask (torch.Tensor): The mask tensor with the same shape as the input tensor. dim (int, optional): The dimension along which to compute the mean. Default is 1. Returns: torch.Tensor: The masked mean tensor. """ tensor = tensor * mask tensor = tensor.sum(dim=dim) mask_sum = mask.sum(dim=dim) mean = tensor / (mask_sum + 1e-8) return mean def compute_reward_ppo( r: Union[torch.Tensor, float], kl_coef: float, log_probs: torch.Tensor, log_probs_base: torch.Tensor, action_mask: Optional[torch.Tensor] = None, reward_eps=5, ) -> torch.Tensor: """ Args: log_probs: [batch_size, response_length] log_probs_base: [batch_size, response_length] action_mask: [batch_size, response_length] r: float Returns: reward: [batch_size, response_length] """ log_ratio = log_probs - log_probs_base # address numerical instability issue kl = -kl_coef * log_ratio * action_mask reward = kl r_clip = torch.clamp(r, -reward_eps, reward_eps) for i in range(action_mask.size(0)): assert action_mask[i].sum() > 0 reward[i, : action_mask[i].sum()] += r_clip[i] reward[i, action_mask[i].sum() :] *= 0 return reward, ((log_ratio * (log_ratio < 10)).exp() - 1 - log_ratio) * action_mask