# 序列并行 作者: Mingyan Jiang **前置教程** - [并行技术](../concepts/paradigms_of_parallelism.md) - [Booster API](../basics/booster_api.md) - [Shardformer](../features/shardformer.md) - [Booster 插件](../basics/booster_plugins.md) **示例代码** - [使用序列并行策略](https://github.com/hpcaitech/ColossalAI/blob/main/examples/language/llama/benchmark.py) **相关论文** [Reducing Activation Recomputation in Large Transformer Models](https://arxiv.org/pdf/2205.05198) [DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models](https://arxiv.org/abs/2309.14509) [Ring Attention with Blockwise Transformers for Near-Infinite Context](https://arxiv.org/pdf/2310.01889) ## 快速预览 在本教程中,你将学习如何使用序列并行。在 Colossal-AI 中, 我们实现了包括TP+SP, DeepSpeed-Ulysses, ring attention等多种序列并行. 我们下面将介绍如何使用这几种序列并行。 ## 目录 在本教程中,我们将介绍三种序列并行的使用: 1. 使用TP+SP; 2. 使用DeepSpeed-Ulysses; 3. 使用ring attention ## Colossal-AI中的实现 在 Colossal-AI 中,shardformer实现了序列并行,并通过`HybridParallelPlugin`和`MoeHybridParallelPlugin`接口可进行调用。相关plugin的介绍请参考plugin的[使用文档](../basics/booster_plugins.md)。 ### 使用`HybridParallelPlugin`的序列并行 `HybridParallelPlugin`的序列支持了TP+SP, DeepSpeed-Ulysses, ring attention三种实现,相关序列并行的结束可参考[并行技术介绍文档](../concepts/paradigms_of_parallelism.md),`HybridParallelPlugin`中的序列并行[例子](https://github.com/hpcaitech/ColossalAI/blob/main/examples/language/llama/benchmark.py) #### 定义模型相关组件 ```python from tqdm import tqdm from transformers import AutoModelForCausalLM from transformers.models.llama.configuration_llama import LlamaConfig from torch.optim.lr_scheduler import _LRScheduler as LRScheduler import torch.distributed as dist from colossalai.booster import Booster config = LlamaConfig(max_position_embeddings=4096) from colossalai.booster.plugin import HybridParallelPlugin # 定义数据集 class RandomDataset(Dataset): def __init__(self, num_samples: int = 1000, max_length: int = 2048, vocab_size: int = 32000): self.num_samples = num_samples self.max_length = max_length self.input_ids = torch.randint( 0, vocab_size, (num_samples, max_length), device=get_accelerator().get_current_device() ) self.attention_mask = torch.ones_like(self.input_ids) def __len__(self): return self.num_samples def __getitem__(self, idx): return { "input_ids": self.input_ids[idx], "attention_mask": self.attention_mask[idx], "labels": self.input_ids[idx], } parser = argparse.ArgumentParser() parser.add_argument("-b", "--batch_size", type=int, default=2, help="Batch size") parser.add_argument("-s", "--num_steps", type=int, default=5, help="Number of steps to run") parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length") parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size") parser.add_argument("--sp", type=int, default=1, help="Sequence parallel size") args = parser.parse_args() model = AutoModelForCausalLM.from_config( config, trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, ) optimizer = HybridAdam(model.parameters()) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1) # usually, num_samples=args.batch_size * args.num_steps * dp_size dataset = RandomDataset( num_samples=10000, max_length=args.max_length, vocab_size=config.vocab_size ) ``` ### 使用TP+SP 定义plugin,使用该序列并行,`sp_size`会被设置为`tp_size`一致,且tp group 与sp group是重叠的。 ```python plugin = HybridParallelPlugin( tp_size=4, sp_size=1, enable_all_optimization=True, enable_sequence_parallelism=True, sequence_parallelism_mode="split_gather", ) ``` #### 使用DeepSpeed-Ulysses 定义plugin, 在DeepSpeed-Ulysses的序列并行种,tp group与sp group 是正交的, ```python plugin = HybridParallelPlugin( tp_size=2, sp_size=2, enable_all_optimization=True, enable_sequence_parallelism=True, sequence_parallelism_mode="all_to_all", ) ``` #### 使用ring attention 定义plugin, 在ring attention的序列并行种,tp group与sp group 是正交的,sp_size必须传入准确的并行大小。 ```python plugin = HybridParallelPlugin( tp_size=2, sp_size=2, enable_all_optimization=True, enable_sequence_parallelism=True, sequence_parallelism_mode="ring_attn", ) ``` #### 使用booster ```python booster = Booster(plugin=plugin) dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, seed=42) model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader) ``` #### 训练模型 ```python for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not dist.get_rank()==0)): outputs = model(**batch) loss = outputs[0] del outputs # free memory if dist.get_rank() == dist.get_world_size() - 1: print(f"Step {step} loss: {loss}") booster.backward(loss, optimizer) optimizer.step() optimizer.zero_grad() ``` ### 使用`MoeHybridParallelPlugin`的序列并行 `MoeHybridParallelPlugin`中的序列并行暂时只支持DeepSpeed-Ulysses类型,使用方法与`HybridParallelPlugin`类似,具体可参考[例子](https://github.com/hpcaitech/ColossalAI/blob/main/examples/language/deepseek/benchmark.py) ### 结论 在上述序列并行方法中,ring attention对head number没有要求,可训练超长文本,但是由于细分了计算,计算性能会有所下降。TP+SP, DeepSpeed-Ulysses对于head number有要求,需要可被sp group size 整除。这些序列并行都可与其他高性能注意力兼容,如flash attention。sp可与Gemini一起使用训练超大规模模型,也可以与TP,PP,DP等组成4D并行。