#!/usr/bin/env python # -*- encoding: utf-8 -*- import copy from functools import partial import pytest import torch import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.zero.init_ctx import ZeroInitContext from colossalai.utils import free_port from colossalai.zero.shard_utils.tensor_shard_strategy import \ TensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_model._zero3_utils import cast_tensor_to_fp16 from tests.components_to_test.registry import non_distributed_component_funcs from common import CONFIG, check_grads_padding, run_fwd_bwd from colossalai.zero.sharded_model.utils import col_model_deepcopy def run_dist(rank, world_size, port, use_zero_init_ctx, enable_autocast): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') test_models = ['repeated_computed_layers', 'resnet18', 'bert'] shard_strategy = TensorShardStrategy() for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() rm_torch_payload_on_the_fly = False if use_zero_init_ctx: with ZeroInitContext(convert_fp16=True, target_device=torch.device('cpu'), shard_strategy=shard_strategy, shard_param=True, rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly): zero_model = model_builder(checkpoint=True) zero_model = ShardedModelV2(zero_model, shard_strategy) model = model_builder(checkpoint=True).half() col_model_deepcopy(zero_model, model) model = model.cuda() else: model = model_builder(checkpoint=True).half().cuda() zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy) model = DDP(model) for i, (data, label) in enumerate(train_dataloader): if i > 3: break data, label = cast_tensor_to_fp16(data).cuda(), label.cuda() run_fwd_bwd(model, data, label, criterion, enable_autocast) run_fwd_bwd(zero_model, data, label, criterion, enable_autocast) check_grads_padding(model, zero_model, loose=True) @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @pytest.mark.parametrize("enable_autocast", [True]) @pytest.mark.parametrize("use_zero_init_ctx", [True]) def test_shard_model_v2(world_size, use_zero_init_ctx, enable_autocast): run_func = partial(run_dist, world_size=world_size, port=free_port(), use_zero_init_ctx=use_zero_init_ctx, enable_autocast=enable_autocast) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_shard_model_v2(world_size=2, use_zero_init_ctx=True, enable_autocast=True)