#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch.distributed as dist from colossalai.registry import DIST_GROUP_INITIALIZER from .process_group_initializer import ProcessGroupInitializer from ..parallel_mode import ParallelMode @DIST_GROUP_INITIALIZER.register_module class Initializer_Model(ProcessGroupInitializer): """A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel groups). :param args: Args used to initialize ProcessGroupInitializer :param kwargs: Kwargs used to initialize ProcessGroupInitializer """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model_parallel_size = self.tensor_parallel_size * self.pipeline_parallel_size self.num_group = self.world_size // self.model_parallel_size def init_dist_group(self): """Initialize model parallel groups, and assign local_ranks and groups to each gpu. :return: (local_rank, group_world_size, process_group, ranks_in_group, mode) :rtype: Tuple """ local_rank = None ranks_in_group = None process_group = None group_world_size = None mode = ParallelMode.MODEL for i in range(self.num_group): ranks = [i * self.model_parallel_size + j for j in range(self.model_parallel_size)] group = dist.new_group(ranks) if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group ranks_in_group = ranks return local_rank, group_world_size, process_group, ranks_in_group, mode