import warnings from functools import partial from typing import Callable, Dict, List, Tuple import numpy as np import torch.nn as nn from torch import Tensor import colossalai.shardformer.layer as col_nn from ..modeling.jit import get_jit_fused_dropout_add_func from ..modeling.whisper import ( WhisperPipelineForwards, get_jit_fused_whisper_decoder_layer_forward, get_jit_fused_whisper_encoder_layer_forward, get_whisper_decoder_forward_for_flash_attention, get_whisper_flash_attention_forward, ) from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription __all__ = [ "WhisperPolicy", "WhisperModelPolicy", "WhisperForConditionalGenerationPolicy", "WhisperForAudioClassificationPolicy", ] class WhisperPolicy(Policy): def __init__(self) -> None: super().__init__() def config_sanity_check(self): pass def preprocess(self): # reshape the embedding layer r""" Reshape the Embedding layer to make the embedding dimension divisible by world_size """ self.tie_weight = self.tie_weight_check() return self.model def module_policy(self): from transformers.models.whisper.modeling_whisper import ( WhisperAttention, WhisperDecoder, WhisperDecoderLayer, WhisperEncoder, WhisperEncoderLayer, WhisperFlashAttention2, WhisperSdpaAttention, ) policy = {} embedding_cls = None if self.shard_config.enable_tensor_parallelism: embedding_cls = col_nn.VocabParallelEmbedding1D else: if self.tie_weight: embedding_cls = col_nn.PaddingEmbedding if self.shard_config.enable_fused_normalization: norm_cls = col_nn.FusedLayerNorm else: norm_cls = col_nn.LayerNorm if self.shard_config.enable_sequence_parallelism: self.shard_config.enable_sequence_parallelism = False warnings.warn( "Whisper doesn't support sequence parallelism now, will ignore the sequence parallelism flag." ) # TODO using the jit fused add_and_dropout affect the accuracy if self.shard_config.enable_jit_fused: self.shard_config.enable_jit_fused = False warnings.warn("Whisper doesn't support jit fused operator now, will ignore the jit fused operator flag.") if self.shard_config.enable_tensor_parallelism: policy[WhisperEncoderLayer] = ModulePolicyDescription( attribute_replacement={ "self_attn.embed_dim": self.model.config.d_model // self.shard_config.tensor_parallel_size, "self_attn.num_heads": self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size, }, sub_module_replacement=[ SubModuleReplacementDescription( suffix="self_attn.q_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.k_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.v_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.out_proj", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="fc1", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="fc2", target_module=col_nn.Linear1D_Row, ), ], ) policy[WhisperDecoderLayer] = ModulePolicyDescription( attribute_replacement={ "self_attn.embed_dim": self.model.config.d_model // self.shard_config.tensor_parallel_size, "self_attn.num_heads": self.model.config.decoder_attention_heads // self.shard_config.tensor_parallel_size, "encoder_attn.embed_dim": self.model.config.d_model // self.shard_config.tensor_parallel_size, "encoder_attn.num_heads": self.model.config.encoder_attention_heads // self.shard_config.tensor_parallel_size, }, sub_module_replacement=[ SubModuleReplacementDescription( suffix="self_attn.q_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.k_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.v_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="self_attn.out_proj", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="encoder_attn.q_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="encoder_attn.k_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="encoder_attn.v_proj", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="encoder_attn.out_proj", target_module=col_nn.Linear1D_Row, ), SubModuleReplacementDescription( suffix="fc1", target_module=col_nn.Linear1D_Col, ), SubModuleReplacementDescription( suffix="fc2", target_module=col_nn.Linear1D_Row, ), ], ) if embedding_cls is not None: self.append_or_create_submodule_replacement( description=[ SubModuleReplacementDescription( suffix="embed_tokens", target_module=embedding_cls, kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by}, ), ], policy=policy, target_key=WhisperDecoder, ) # optimization configuration # Handle encoder layer self.append_or_create_submodule_replacement( description=[ SubModuleReplacementDescription( suffix="self_attn_layer_norm", target_module=norm_cls, ), SubModuleReplacementDescription( suffix="final_layer_norm", target_module=norm_cls, ), ], policy=policy, target_key=WhisperEncoderLayer, ) # Handle decoder layer self.append_or_create_submodule_replacement( description=[ SubModuleReplacementDescription( suffix="self_attn_layer_norm", target_module=norm_cls, ), SubModuleReplacementDescription( suffix="final_layer_norm", target_module=norm_cls, ), ], policy=policy, target_key=WhisperDecoderLayer, ) # handle encoder layer self.append_or_create_submodule_replacement( description=[ SubModuleReplacementDescription( suffix="layer_norm", target_module=norm_cls, ) ], policy=policy, target_key=WhisperEncoder, ) # handle decoder layer self.append_or_create_submodule_replacement( description=[ SubModuleReplacementDescription( suffix="layer_norm", target_module=norm_cls, ) ], policy=policy, target_key=WhisperDecoder, ) # enable flash attention if self.shard_config.enable_flash_attention: self.append_or_create_method_replacement( description={ "forward": get_whisper_flash_attention_forward(), }, policy=policy, target_key=WhisperAttention, ) self.append_or_create_method_replacement( description={ "forward": get_whisper_flash_attention_forward(), }, policy=policy, target_key=WhisperFlashAttention2, ) self.append_or_create_method_replacement( description={ "forward": get_whisper_flash_attention_forward(), }, policy=policy, target_key=WhisperSdpaAttention, ) if not self.shard_config.pipeline_stage_manager: self.append_or_create_method_replacement( description={ "forward": get_whisper_decoder_forward_for_flash_attention(self.shard_config), }, policy=policy, target_key=WhisperDecoder, ) # use jit fused operator if self.shard_config.enable_jit_fused: self.append_or_create_method_replacement( description={ "forward": get_jit_fused_whisper_decoder_layer_forward(), "dropout_add": get_jit_fused_dropout_add_func(), }, policy=policy, target_key=WhisperDecoderLayer, ) self.append_or_create_method_replacement( description={ "forward": get_jit_fused_whisper_encoder_layer_forward(), "dropout_add": get_jit_fused_dropout_add_func(), }, policy=policy, target_key=WhisperEncoderLayer, ) return policy def add_lm_head_policy(self, base_policy): from transformers.models.whisper.modeling_whisper import WhisperForConditionalGeneration # optimize for tensor parallelism if self.shard_config.enable_tensor_parallelism: self.append_or_create_submodule_replacement( description=SubModuleReplacementDescription( suffix="proj_out", target_module=col_nn.VocabParallelLMHead1D, kwargs={ "gather_output": True, "make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by, }, ), policy=base_policy, target_key=WhisperForConditionalGeneration, ) else: self.append_or_create_submodule_replacement( description=SubModuleReplacementDescription( suffix="proj_out", target_module=col_nn.PaddingLMHead, kwargs={"make_vocab_size_divisible_by": self.shard_config.make_vocab_size_divisible_by}, ), policy=base_policy, target_key=WhisperForConditionalGeneration, ) return base_policy def postprocess(self): return self.model def distribute_whisper_layers( self, num_encoder_layers: int, num_decoder_layers: int, num_stages: int ) -> Tuple[List[int], int]: """ Distribute whisper layers into stages when pipeline parallel is used. Return the layer distribution as a list and the starting stage of decoder. If decoder doesn't exist, returned decoder starting stage is set to num_encoder_layers. """ stage_manager = self.pipeline_stage_manager assert stage_manager is not None, "pipeline_stage_manager is None" # number of encoder layers must be a positive integer if num_encoder_layers <= 0: raise ValueError("The number of encoder layers for whisper must be a positive integer.") # number of layers should be large enough to fill in every stage if num_encoder_layers + num_decoder_layers < num_stages: raise ValueError("The total number of layers can't be smaller than number of stages.") # in the case of whisperEncoderModel, set decoder starting stage to num_stages since it doesn't exist if num_decoder_layers == 0: return stage_manager.distribute_layers(num_encoder_layers, num_stages), num_stages # the number of stages distributed between encoder and decoder is optimized in this way: # num_encoder_stages = argmin(abs(num_encoder_layers / encoder_stages - num_decoder_layers / decoder_stages)) # s.t. num_encoder_stages + num_decoder_stages = num_stages, num_encoder_stages >= 1, num_decoder_stages >= 1 def objective(num_encoder_stages): return abs(num_encoder_layers / num_encoder_stages - num_decoder_layers / (num_stages - num_encoder_stages)) num_encoder_stages = np.argmin([objective(i) for i in range(1, num_stages)]) + 1 num_decoder_stages = num_stages - num_encoder_stages encoder_distribution = stage_manager.distribute_layers(num_encoder_layers, num_encoder_stages) decoder_distribution = stage_manager.distribute_layers(num_decoder_layers, num_decoder_stages) return encoder_distribution + decoder_distribution, num_encoder_stages def get_whisper_stage_index( self, layers_per_stage: List[int], stage: int, decoder_starting_stage: int ) -> Tuple[int, int]: """ Input the distribution of layers among stages, the current stage and the first stage of decoder. Return the starting/ending idx of layers in encoder/decoder """ stage_manager = self.pipeline_stage_manager assert stage_manager is not None, "pipeline_stage_manager is None" if stage < decoder_starting_stage: return stage_manager.get_stage_index(layers_per_stage[:decoder_starting_stage], stage) else: return stage_manager.get_stage_index( layers_per_stage[decoder_starting_stage:], stage - decoder_starting_stage, ) def get_held_layers(self) -> List[nn.Module]: assert self.pipeline_stage_manager is not None, "pipeline_stage_manager is None" stage_manager = self.pipeline_stage_manager if self.model.__class__.__name__ == "WhisperModel": model = self.model elif self.model.__class__.__name__ == "WhisperForConditionalGeneration": model = self.model.model else: model = None if model: encoder = self.model.get_encoder() decoder = self.model.get_decoder() else: # whisper for audio classification holds encoder only encoder = self.model.encoder decoder = None num_encoder_layers = len(encoder.layers) if decoder: num_decoder_layers = len(decoder.layers) else: num_decoder_layers = 0 held_layers = [] layers_per_stage, decoder_starting_stage = self.distribute_whisper_layers( num_encoder_layers, num_decoder_layers, stage_manager.num_stages ) start_idx, end_idx = self.get_whisper_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage) if stage_manager.stage < decoder_starting_stage: # current stage is in whisper's encoder if stage_manager.is_first_stage(): held_layers.append(encoder.embed_positions) held_layers.append(encoder.conv1) held_layers.append(encoder.conv2) if stage_manager.stage == decoder_starting_stage - 1: held_layers.append(encoder.layer_norm) held_layers.extend(encoder.layers[start_idx:end_idx]) else: # current stage is in whisper's decoder # TODO:(Jianghai) We divide encoder and decoder layers into different parts here, # the case encoder and decoder put in same stage should be add in the future. if stage_manager.stage == decoder_starting_stage: held_layers.append(decoder.embed_tokens) held_layers.append(decoder.embed_positions) if stage_manager.is_last_stage(): held_layers.append(decoder.layer_norm) held_layers.extend(decoder.layers[start_idx:end_idx]) return held_layers def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None: """If under pipeline parallel setting, replacing the original forward method of huggingface to customized forward method, and add this changing to policy.""" if not self.pipeline_stage_manager: raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.") stage_manager = self.pipeline_stage_manager if self.model.__class__.__name__ == "WhisperModel": model = self.model elif self.model.__class__.__name__ == "WhisperForConditionalGeneration": model = self.model.model else: model = None if model: encoder = self.model.get_encoder() decoder = self.model.get_decoder() else: encoder = self.model.encoder decoder = None num_encoder_layers = len(encoder.layers) if decoder: num_decoder_layers = len(decoder.layers) else: num_decoder_layers = 0 layers_per_stage, decoder_starting_stage = self.distribute_whisper_layers( num_encoder_layers, num_decoder_layers, stage_manager.num_stages ) stage_index = self.get_whisper_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage) method_replacement = { "forward": partial( new_forward, stage_manager=stage_manager, stage_index=stage_index, decoder_starting_stage=decoder_starting_stage, shard_config=self.shard_config, ) } self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls) # WhisperModel class WhisperModelPolicy(WhisperPolicy): def module_policy(self): from transformers import WhisperModel policy = super().module_policy() if self.pipeline_stage_manager is not None: self.set_pipeline_forward( model_cls=WhisperModel, new_forward=WhisperPipelineForwards.whisper_model_forward, policy=policy, ) return policy def get_held_layers(self) -> List[nn.Module]: return super().get_held_layers() def get_shared_params(self) -> List[Dict[int, Tensor]]: "no shared params in whisper model" return [] # WhisperForConditionalGeneration class WhisperForConditionalGenerationPolicy(WhisperPolicy): def module_policy(self): from transformers import WhisperForConditionalGeneration policy = super().module_policy() policy = self.add_lm_head_policy(policy) if self.pipeline_stage_manager is not None: self.set_pipeline_forward( model_cls=WhisperForConditionalGeneration, new_forward=WhisperPipelineForwards.whisper_for_conditional_generation_forward, policy=policy, ) return policy def postprocess(self): return self.model def get_held_layers(self) -> List[nn.Module]: held_layers = super().get_held_layers() if self.pipeline_stage_manager.is_last_stage(): held_layers.append(self.model.proj_out) return held_layers def get_shared_params(self) -> List[Dict[int, Tensor]]: module = self.model model = module.model if model: encoder = self.model.get_encoder() decoder = self.model.get_decoder() else: encoder = self.model.encoder decoder = None num_encoder_layers = len(encoder.layers) if decoder: num_decoder_layers = len(decoder.layers) else: num_decoder_layers = 0 stage_manager = self.pipeline_stage_manager if stage_manager is not None and stage_manager.num_stages > 1: _, decoder_starting_stage = self.distribute_whisper_layers( num_encoder_layers, num_decoder_layers, stage_manager.num_stages ) shared_params = [] shared_embedding = {} if id(module.proj_out) == id(model.decoder.embed_tokens): shared_embedding[decoder_starting_stage] = model.decoder.embed_tokens shared_embedding[stage_manager.num_stages - 1] = module.proj_out if len(shared_embedding) > 0: shared_params.append(shared_embedding) return shared_params return [] # WhisperForAudioClassification class WhisperForAudioClassificationPolicy(WhisperPolicy): def module_policy(self): from transformers import WhisperForAudioClassification policy = super().module_policy() if self.pipeline_stage_manager is not None: self.set_pipeline_forward( model_cls=WhisperForAudioClassification, new_forward=WhisperPipelineForwards.whisper_for_audio_classification_forward, policy=policy, ) return policy def get_held_layers(self) -> List[nn.Module]: held_layers = super().get_held_layers() if self.pipeline_stage_manager.is_last_stage(): held_layers.append(self.model.projector) held_layers.append(self.model.classifier) return held_layers def get_shared_params(self) -> List[Dict[int, Tensor]]: return []