#!/usr/bin/env python # -*- encoding: utf-8 -*- from functools import partial import pytest import torch import torch.multiprocessing as mp from common import CONFIG, check_grads_padding, run_fwd_bwd from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.testing import parameterize, rerun_if_address_is_in_use from colossalai.utils import free_port from colossalai.zero.init_ctx import ZeroInitContext from colossalai.zero.shard_utils import BucketTensorShardStrategy from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16 from colossalai.zero.sharded_model.utils import col_model_deepcopy from tests.components_to_test.registry import non_distributed_component_funcs @parameterize("enable_autocast", [True]) @parameterize("shard_strategy_class", [BucketTensorShardStrategy]) def run_model_test(enable_autocast, shard_strategy_class): test_models = ['repeated_computed_layers', 'resnet18', 'bert', 'hanging_param_model'] shard_strategy = shard_strategy_class() for model_name in test_models: get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()), shard_strategy=shard_strategy, shard_param=True): zero_model = model_builder(checkpoint=True) zero_model = ShardedModelV2(zero_model, shard_strategy) model = model_builder(checkpoint=True).half() col_model_deepcopy(zero_model, model) model = model.cuda() model = DDP(model, device_ids=[torch.cuda.current_device()]) for i, (data, label) in enumerate(train_dataloader): if i > 5: break data, label = cast_tensor_to_fp16(data).cuda(), label.cuda() run_fwd_bwd(model, data, label, criterion, enable_autocast) run_fwd_bwd(zero_model, data, label, criterion, enable_autocast) check_grads_padding(model, zero_model, loose=True) def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_model_test() @pytest.mark.dist @pytest.mark.parametrize("world_size", [1, 2]) @rerun_if_address_is_in_use() def test_shard_model_v2(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_shard_model_v2(world_size=2)