from typing import Optional from transformers import LlamaConfig, LlamaForCausalLM from ..base import LM class LlamaLM(LM): """ Llama language model. Args: pretrained (str): Pretrained model name or path. config (LlamaConfig): Model config. checkpoint (bool): Enable gradient checkpointing. lora_rank (int): LoRA rank. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[LlamaConfig] = None, checkpoint: bool = False, lora_rank: int = 0, lora_train_bias: str = 'none') -> None: if pretrained is not None: model = LlamaForCausalLM.from_pretrained(pretrained) elif config is not None: model = LlamaForCausalLM(config) else: model = LlamaForCausalLM(LlamaConfig()) if checkpoint: model.gradient_checkpointing_enable() super().__init__(model, lora_rank, lora_train_bias) def forward(self, input_ids, attention_mask=None, labels=None, **kwargs): return self.model(input_ids, attention_mask=attention_mask, labels=labels, **kwargs)