from typing import Optional import torch import torch.nn as nn from transformers import AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM from ..base import Critic class LlamaCritic(Critic): """ Llama Critic model. Args: pretrained (str): Pretrained model name or path. config (LlamaConfig): Model config. checkpoint (bool): Enable gradient checkpointing. lora_rank (int): LoRA rank. lora_train_bias (str): LoRA bias training mode. """ def __init__(self, pretrained: Optional[str] = None, config: Optional[LlamaConfig] = None, checkpoint: bool = False, lora_rank: int = 0, lora_train_bias: str = 'none', **kwargs) -> None: if pretrained is not None: model = LlamaForCausalLM.from_pretrained(pretrained) elif config is not None: model = LlamaForCausalLM(config) else: model = LlamaForCausalLM(LlamaConfig()) if checkpoint: model.gradient_checkpointing_enable() value_head = nn.Linear(model.config.hidden_size, 1) super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)