import pytest import colossalai import torch import torch.multiprocessing as mp from colossalai.context.parallel_mode import ParallelMode from colossalai.testing import rerun_if_address_is_in_use from colossalai.utils.cuda import get_current_device from colossalai.utils import free_port from colossalai.utils import ColoInitContext from colossalai.tensor import ChunkManager from colossalai.core import global_context as gpc from functools import partial from _utils import tensor_equal, tensor_shard_equal, set_seed from tests.components_to_test.registry import non_distributed_component_funcs from torch.nn.parallel import DistributedDataParallel as DDP from colossalai.nn.parallel import ColoDDPV2 from colossalai.nn.optimizer import HybridAdam from colossalai.zero import ZeroOptimizer from colossalai.testing import parameterize from colossalai.amp import convert_to_apex_amp def check_param_equal(model, torch_model): for p, torch_p in zip(model.parameters(), torch_model.parameters()): if p.storage().size() > 0: assert p.dtype == torch.half assert tensor_equal(torch_p, p), f'{torch_p} vs {p}' def run_step(model, criterion, optimizer, input_ids, attn_mask): optimizer.zero_grad() logits = model(input_ids, attn_mask) logits = logits.float() loss = criterion(logits, input_ids) optimizer.backward(loss) optimizer.step() return logits @parameterize('use_chunk', [False, True]) @parameterize('use_zero', [False, True]) def run_gpt(use_chunk, use_zero): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() with ColoInitContext(device=get_current_device()): model = model_builder() model = model.cuda().half() torch_model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): torch_p.data.copy_(p) chunk_size = 38 * 1024**2 if use_chunk else None chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero) model = ColoDDPV2(model, chunk_manager) optim = HybridAdam(model.parameters(), lr=1e-3) optim = ZeroOptimizer(optim, model, initial_scale=32) amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=32) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[gpc.get_global_rank()], process_group=gpc.get_group(ParallelMode.DATA)) # print(chunk_manager) check_param_equal(model, torch_model) model.train() torch_model.train() set_seed(gpc.get_local_rank(ParallelMode.DATA)) for i, (input_ids, attn_mask) in enumerate(train_dataloader): if i > 2: break logits = run_step(model, criterion, optim, input_ids, attn_mask) torch_logits = run_step(torch_model, criterion, torch_optim, input_ids, attn_mask) assert tensor_equal(logits, torch_logits) check_param_equal(model, torch_model) def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') run_gpt() @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() def test_gpt(world_size): run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_gpt(4)