#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch.distributed as dist from colossalai.registry import DIST_GROUP_INITIALIZER from .initializer_tensor import Initializer_Tensor from .process_group_initializer import ProcessGroupInitializer from ..parallel_mode import ParallelMode @DIST_GROUP_INITIALIZER.register_module class Initializer_Sequence_DP(ProcessGroupInitializer): """A ProcessGroupInitializer for sequence parallelism all-reduce. In Sequence Parallelism, each GPU holds the full copy of model weights, thus, gradient all-reduce occurs across all processes in the same pipeline stage Args: rank (int): The rank of current process world_size (int): Size of whole communication world config (Config): Running configuration data_parallel_size (int): Size of data parallel pipeline_parallel_size (int): Size of pipeline parallel tensor_parallel_size (int): Size of tensor parallel """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dp_size = self.world_size // self.pipeline_parallel_size self.num_group = self.pipeline_parallel_size def init_dist_group(self): """Initialize Sequence Parallel process groups used for gradient all-reduce. Returns: Tuple: A tuple (local_rank, group_world_size, process_group, ranks_in_group, mode). """ local_rank = None ranks_in_group = None process_group = None cpu_group = None group_world_size = None mode = ParallelMode.SEQUENCE_DP for i in range(self.num_group): ranks = [i * self.dp_size + j for j in range(self.dp_size)] group = dist.new_group(ranks) group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group if self.rank in ranks: local_rank = ranks.index(self.rank) group_world_size = len(ranks) process_group = group cpu_group = group_cpu ranks_in_group = ranks return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode @DIST_GROUP_INITIALIZER.register_module class Initializer_Sequence(ProcessGroupInitializer): """A ProcessGroupInitializer for sequence parallelism. Args: rank (int): The rank of current process. world_size (int): Size of whole communication world. config (Config): Running configuration. data_parallel_size (int): Size of data parallel. pipeline_parallel_size (int): Size of pipeline parallel. tensor_parallel_size (int): Size of tensor parallel. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # reuse tensor parallel initializer code self._sequence_initializer = Initializer_Tensor(*args, **kwargs) self._sequence_dp_initializer = Initializer_Sequence_DP(*args, **kwargs) def init_dist_group(self): """Initialize Sequence parallel process groups and assign local_ranks and groups to each gpu. Sequence parallelism requires 2 process groups. The first is for model forward where several processes exchange partial query, key and value embedding to compute self attention values. The second is for all-reduce to synchronize the model parameters. Returns: List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]: A Sequence parallelism's information in list of tuples. """ parallel_setting = [] local_rank, group_world_size, process_group, cpu_grop, ranks_in_group, mode = \ self._sequence_initializer.init_dist_group() # change mode to sequence mode = ParallelMode.SEQUENCE parallel_setting.append((local_rank, group_world_size, process_group, cpu_grop, ranks_in_group, mode)) parallel_setting.append(self._sequence_dp_initializer.init_dist_group()) return parallel_setting